Boomers vs. Millennials: Who Owes How Much to Whom?

An-Chi TUNG (actung@econ.sinica.edu.tw)
Kevin Yu-Ching HSIEH (yqxie1996@hotmail.com)

Virtual NTA Global Meeting, 2020.8.3~2020.8.7
Boomers vs Millennials: Who Owes How Much to Whom?

• “Boomer-blaming” debate
 ✓ Millennials accuse (e.g., *How the Baby Boomers Stole the Millennials’ Economic Future*, 2019)
 ✓ Boomers defend (e.g., *Stop Mugging Grandma*, 2019)
 ✓ Taiwan’s “Lost Generation” of c1978-c1993, victimized by widened wealth gap

• We use NTA data to answer a simple (economic) question
 ✓ “Do some cohorts transfer more resources to other cohorts than they receive in lifetime?”
 ✓ Specifically, “Does a Millennial lose out relative to a Boomer, and by how much?”

• Findings
 ✓ We measure the net intergenerational transfer flows of two cohorts
 ✓ To our surprise, the Millennials may not be losers relative to Boomers.
 → How robust is this finding? If robust, why does it contradict popular impression?
Method: lifetime intergenerational transfers

- **Intergenerational Transfers** = Net Public Transfers + Net Private Transfers
- **Public Transfers** (not including the budget balancing term, TGDS, in NTA)
 - public inflows = in-kind transfers + social benefits + other cash benefit
 - public outflows = taxes + social contributions + other cash payments
- **Private Transfers** (not yet including inter-household transfers, which are rather small anyway)
 - intra-household transfer inflows
 - Intra-household transfer outflows
Data: Two cohorts are compared

• **c1981**: 36 yrs (annual data) + 55 yrs (forward projections, following GA method)

• **c1951**: 30 yrs (backward projection) + 36 yrs + 25 yrs (forward projections)
Background

- Rapid changes in Taiwan in the last 7 decades
 - **Economic growth:** average GDP per capita grew at 16.6% (1950s) → 3% (2010s);
 in real terms, 4.8% (1950s) → 2.6% (2010s);
 longer schooling years, higher health spending,…
 - **Welfare:** few social programs in the beginning, more are launched,
 but some are overly generous, and pension reforms began since 2019
 - **Demography:** TFR 5.75 (1960) → 1.06 (2018), once 0.895 (2010);
 - **family:** 5.24 persons per household (1976) → 3.05 (2018);
 intra-household transfers shift towards kids along family nuclearization
Result 1: Net intergenerational transfers

Calendar Year 2016, per capita

Cohort of 1951, nominal, per capita

Need to discount!

2016
Discounted at 3% (2016 value)

Discounted at 7% (2016 value)
Result 2: Lifetime intergenerational transfers

<table>
<thead>
<tr>
<th>Survival rate adjusted</th>
<th>Discount rate = 3%</th>
<th>Discount rate = 7%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c1951</td>
<td>c1981</td>
</tr>
<tr>
<td>Private Transfers</td>
<td>-2,719,975</td>
<td>822,091</td>
</tr>
<tr>
<td>Public Transfers</td>
<td>165,706</td>
<td>1,941,350</td>
</tr>
<tr>
<td>Total Intergenerational Transfers</td>
<td>-2,554,269</td>
<td>2,763,441</td>
</tr>
</tbody>
</table>

• At both 3% and 7%, c1981 receives POSITIVE lifetime intergenerational transfers, while c1951 is a net payer in its lifetime!
→ This is the opposite of popular belief. How robust is this finding?
Is this result reasonable?

• 3%, 5%, 7% are numbers often used (Auerbach, 1999)
 ✓ though US CEA (2017) recommends a lower number for today

• Yet neither 3% or 7% seems right for Taiwan
 ✓ For either $\rho = 3\%$ or $\rho = 7\%$, the pre-1981 part of c1951 is still tiny
 ✓ For $\rho = 7\%$, the post-2016 part of both c1951 and c1981 also looks small
Discounted at 3% (2016 value)

Pre-1981

c1951

Discounted at 7% (2016 value)

Post-2016

c1951

c1981

c1981

Public

Private
Economic performance of Taiwan
Choosing the discount rate

• A common approach: Social Rate of Time Preference
 ✓ Ramsey (1928) equation, extended by Mankiw (1981)
 \[\rho_t = \delta + \gamma g_t - \text{uncertainties} \]
 i.e., \(\rho_t = f(\text{survival rate, risk aversion, econ growth rate, uncertainty, ...}) \)
 ✓ Note that in the textbook, there is usually a subscript \(t \) for \(\rho \)

• Empirically, time preference schedule is sometimes non-linear (e.g., Ogawa, 1996)

• Discount rate experiments
 ✓ fixed (\(\bar{\rho} \)): 3%, 5%, 7%, …
 ✓ time-varying (\(\rho_t \)): interest rate, GDP deflator, **GDP per capita growth rate** (\(g_t \)), …
 ✓ Here two cases are reported: \(g_t \) and 3%
Result 3: Discount at non-constant rate

<table>
<thead>
<tr>
<th>Discount rate</th>
<th>(\bar{\rho} = 3%)</th>
<th>(\rho_t = g_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c1951</td>
<td>c1981</td>
</tr>
<tr>
<td>Private Transfers</td>
<td>-2,719,975</td>
<td>822,091</td>
</tr>
<tr>
<td>Public Transfers</td>
<td>165,706</td>
<td>1,941,350</td>
</tr>
<tr>
<td>Total Intergenerational Transfers</td>
<td>-2,554,269</td>
<td>2,763,441</td>
</tr>
</tbody>
</table>

- When \(\rho_t = g_t \), c1951 receives POSITIVE, not negative, transfers in its lifetime.
- However, c1981 still receives more net transfers than c1951.
Result 4: Magnitude of the transfers

• For ease of comparison, we calculate these values as % of lifetime labor income
• Still, c1981 receives a higher rate of total intergenerational transfers, and this is so in many (but not all) cases at the more detailed level.

<table>
<thead>
<tr>
<th>sector</th>
<th>age group</th>
<th>(\bar{\rho} = 3%)</th>
<th>(\rho_t = g_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>c1951</td>
<td>c1981</td>
</tr>
<tr>
<td>Private</td>
<td>0-19</td>
<td>1.18%</td>
<td>15.76%</td>
</tr>
<tr>
<td>transfers</td>
<td>20-59</td>
<td>-24.17%</td>
<td>-16.58%</td>
</tr>
<tr>
<td></td>
<td>60-90⁺</td>
<td>8.05%</td>
<td>3.95%</td>
</tr>
<tr>
<td>Public</td>
<td>0-19</td>
<td>0.55%</td>
<td>7.47%</td>
</tr>
<tr>
<td>transfers</td>
<td>20-59</td>
<td>-15.27%</td>
<td>-10.76%</td>
</tr>
<tr>
<td></td>
<td>60-90⁺</td>
<td>15.63%</td>
<td>10.66%</td>
</tr>
<tr>
<td>Total</td>
<td>0-90⁺</td>
<td>-14.04%</td>
<td>10.49%</td>
</tr>
</tbody>
</table>
\[\overline{\rho} = 3\% \text{ (2016 value)} \]

\[\rho_t = g_t \text{ (2016 value)} \]
Discussion 1

• Is c1981 a “loser” in intergenerational transfers, as commonly thought?

 NO.

 ✓ The c1981 receives more transfers than it gives to other generations,

 ✓ The c1981 receives more than c1951, in present value, as well as in ratio

 ✓ The above statements hold true, whether the discount rate is fixed or time-varying
Discussion 2

• Why does c1981 receive more transfers than c1951?
 Rapid social, economic and institutional changes matter (note that, by using g_t to
discount, the “income effect” is already taken care of).
 ✓ The c1981 received more transfers at childhood, due to education expansion and family
 nuclearization
 ✓ The c1981 will receive larger amount of public pensions, because of new social programs,
 e.g., National Pension since 2008
 ✓ As for age 20-59, the c1981 pays a lower tax rate, but mostly for accounting reasons:
 they spent more years in schools and started working (and paying taxes) later;
 also their lifetime labor income is higher, making their tax rates look smaller.
Discussion 3

• Why does our finding contradict popular impression?
 ✓ We measure lifetime transfers, yet an individual may care more about specific instants:
 In 2016, the c1981 (aged 35) is starting to face the hardships as a “net payer”,
 whereas the c1951 (aged 65) has just entered the life stage to enjoy net inflows.
 ✓ We measure intergenerational transfers only, yet
 an individual may considers all types of transfers, including asset reallocation
 ✓ Moreover, we consider current/known flows and situations, yet there are also
 worsened wealth gap, between and within cohorts,
 upcoming reforms (e.g., Labor Pension Reform and Long-term Care Insurance),
 escalated uncertainties in the post-covid 19 era

• More work to do…