

What Drives the Increase in Health Costs with Age?

Maciej Lis

NTA Workshop, Saly, Senegal, 06.2016

Health care expenditure (HCE) and age

. . :

- HCE has risen faster then GDP in all OECD countries, at least since 1970, with great variation among countries
- Aggregate HCE is driven by technological change in medicine, institutional setting, income effect, and Baumoll effect, but age structure remains a significant factor
- HCE is an important part of consumption in NTA: What drives the shape of the HCE-age profile?

Health care expenditure (HCE) and age

1:

- HCE has risen faster then GDP in all OECD countries, at least since 1970, with great variation among countries
- Aggregate HCE is driven by technological change in medicine, institutional setting, income effect. and Baumoll effect, but age structure remains a significant factor
- HCE is an important part of consumption in NTA: What drives the shape of the HCE-age profile?

Health care expenditure (HCE) and age

. 1 :

- HCE has risen faster then GDP in all OECD countries, at least since 1970, with great variation among countries
- Aggregate HCE is driven by technological change in medicine, institutional setting, income effect, and Baumoll effect, but age structure remains a significant factor
- HCE is an important part of consumption in NTA: What drives the shape of HCE-age profile?

- HCE-age relation is not trivial
- Changes in morbidity and treatment are more important than changes in mortality for HCE
- Rise of HCE with age is driven by the prevalence of healthcare and intensity of treatment, whereas unit costs are less important
- Age patterns differ greatly with the type of care
- After age 70, the intensity of healthcare use and the unit cost drop
- Gender differences in HCE are pregnancy related

. . :

- HCE-age relation is not trivial
- Changes in morbidity and treatment are more important than changes in mortality for HCE
- Rise of HCE with age is driven by the prevalence of healthcare and intensity of treatment, whereas unit costs are less important
- Age patterns differ greatly with the type of care
- After age 70, the intensity of healthcare use and the unit cost drop
- Gender differences in HCE are pregnancy related

. . .

- HCE-age relation is not trivial
- Changes in morbidity and treatment are more important than changes in mortality for HCE
- Rise of HCE with age is driven by the prevalence of healthcare and intensity of treatment, whereas unit costs are less important
- Age patterns differ greatly with the type of care
- After age 70, the intensity of healthcare use and the unit cost drop
- Gender differences in HCE are pregnancy related

1:

- HCE-age relation is not trivial
- Changes in morbidity and treatment are more important than changes in mortality for HCE
- Rise of HCE with age is driven by the prevalence of healthcare and intensity of treatment, whereas unit costs are less important
- Age patterns differ greatly with the type of care
- After age 70, the intensity of healthcare use and the unit cost drop
- Gender differences in HCE are pregnancy related

. . .

- HCE-age relation is not trivial
- Changes in morbidity and treatment are more important than changes in mortality for HCE
- Rise of HCE with age is driven by the prevalence of healthcare and intensity of treatment, whereas unit costs are less important
- Age patterns differ greatly with the type of care
- After age 70, the intensity of healthcare use and the unit cost drop
- Gender differences in HCE are pregnancy related

. 1 :

- HCE-age relation is not trivial
- Changes in morbidity and treatment are more important than changes in mortality for HCE
- Rise of HCE with age is driven by the prevalence of healthcare and intensity of treatment, whereas unit costs are less important
- Age patterns differ greatly with the type of care
- After age 70, the intensity of healthcare use and the unit cost drop
- Gender differences in HCE are pregnancy related

. 1 :

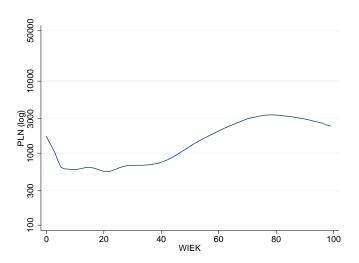
- 50% of USA GDP per capita; HCE per capita in Poland is among the lowest in the OECD
- 98% of Poles entitled for NHS, funded by employer and employee contributions (Bismarck type)
- 60% of HCE financed by NHS, 80% of NHS costs ascribed to age
- Break-down by age, gender, type, and decedents and survivors
- Data limitations: Just a fraction of long-term care costs, cross-section from 2012

1:

- 50% of USA GDP per capita; HCE per capita in Poland is among the lowest in the OECD
- 98% of Poles entitled for NHS, funded by employer and employee contributions (Bismarck type)
- 60% of HCE financed by NHS, 80% of NHS costs ascribed to age
- Break-down by age, gender, type, and decedents and survivors
- Data limitations: Just a fraction of long-term care costs, cross-section from 2012

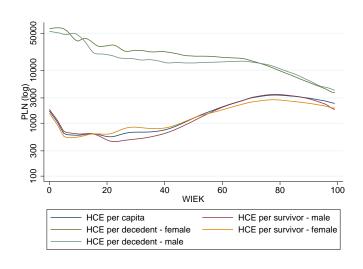
. . :

- 50% of USA GDP per capita; HCE per capita in Poland is among the lowest in the OECD
- 98% of Poles entitled for NHS, funded by employer and employee contributions (Bismarck type)
- 60% of HCE financed by NHS, 80% of NHS costs ascribed to age
- Break-down by age, gender, type, and decedents and survivors
- Data limitations: Just a fraction of long-term care costs, cross-section from 2012


. 1 :

- 50% of USA GDP per capita; HCE per capita in Poland is among the lowest in the OECD
- 98% of Poles entitled for NHS, funded by employer and employee contributions (Bismarck type)
- 60% of HCE financed by NHS, 80% of NHS costs ascribed to age
- Break-down by age, gender, type, and decedents and survivors
- Data limitations: Just a fraction of long-term care costs, cross-section from 2012

. 1 :


- 50% of USA GDP per capita; HCE per capita in Poland is among the lowest in the OECD
- 98% of Poles entitled for NHS, funded by employer and employee contributions (Bismarck type)
- 60% of HCE financed by NHS, 80% of NHS costs ascribed to age
- Break-down by age, gender, type, and decedents and survivors
- Data limitations: Just a fraction of long-term care costs, cross-section from 2012

Is health care expenditure and age relation trivial?

Maybe not trivial

1:

Observing identity (for every age group):

$$H = H^s + H^d = rac{H^s}{I^s} \quad rac{I^s}{U^s} \quad rac{U^s}{S^s} \quad rac{S^s}{P} \quad P$$
 $+ \quad rac{H^d}{I^d} \quad rac{I^d}{U^d} \quad rac{U^d}{S^d} \quad rac{D^s}{P} \quad P$

assuming that each factor is an independent function (process) of age:

$$H(a) = h^{s}(a) \quad i^{s}(a) \quad u^{s}(a) \quad (1 - d(a)) \quad P(a)$$

 $+ \quad h^{d}(a) \quad i^{d}(a) \quad u^{d}(a) \quad d(a) \quad P(a)$

1:

Observing identity (for every age group):

$$H = H^{s} + H^{d} = \frac{H^{s}}{I^{s}} \quad \frac{I^{s}}{U^{s}} \quad \frac{U^{s}}{S^{s}} \quad \frac{S^{s}}{P} \quad P$$
$$+ \quad \frac{H^{d}}{I^{d}} \quad \frac{I^{d}}{I^{d}} \quad \frac{U^{d}}{S^{d}} \quad \frac{D^{s}}{P} \quad P$$

assuming that each factor is an independent function (process) of age:

$$H(a) = \mathbf{h}^{\mathbf{s}}(\mathbf{a}) \quad i^{\mathbf{s}}(a) \quad u^{\mathbf{s}}(a) \quad (1 - d(a)) \quad P(a)$$
$$+ \quad \mathbf{h}^{\mathbf{d}}(\mathbf{a}) \quad i^{\mathbf{d}}(a) \quad u^{\mathbf{d}}(a) \quad d(a) \quad P(a)$$

1:

Observing identity (for every age group):

$$H = H^{s} + H^{d} = \frac{H^{s}}{I^{s}} \quad \frac{I^{s}}{U^{s}} \quad \frac{U^{s}}{S^{s}} \quad \frac{S^{s}}{P} \quad P$$
$$+ \quad \frac{H^{d}}{I^{d}} \quad \frac{I^{d}}{I^{d}} \quad \frac{U^{d}}{S^{d}} \quad \frac{D^{s}}{P} \quad P$$

assuming that each factor is an independent function (process) of age:

$$H(a) = h^{s}(a) \quad \mathbf{i}^{s}(\mathbf{a}) \quad u^{s}(a) \quad (1 - d(a)) \quad P(a)$$
$$+ \quad h^{d}(a) \quad \mathbf{i}^{d}(\mathbf{a}) \quad u^{d}(a) \quad d(a) \quad P(a)$$

1:

Observing identity (for every age group):

$$H = H^{s} + H^{d} = \frac{H^{s}}{I^{s}} \quad \frac{I^{s}}{U^{s}} \quad \frac{U^{s}}{S^{s}} \quad \frac{S^{s}}{P} \quad P$$
$$+ \quad \frac{H^{d}}{I^{d}} \quad \frac{I^{d}}{I^{d}} \quad \frac{U^{d}}{S^{d}} \quad \frac{D^{s}}{P} \quad P$$

assuming that each factor is an independent function (process) of age:

$$H(a) = h^{s}(a) \quad i^{s}(a) \quad \mathbf{u}^{s}(a) \quad (1 - d(a)) \quad P(a)$$
$$+ \quad h^{d}(a) \quad i^{d}(a) \quad \mathbf{u}^{d}(a) \quad d(a) \quad P(a)$$

1:

Observing identity (for every age group):

$$H = H^{s} + H^{d} = \frac{H^{s}}{I^{s}} \quad \frac{I^{s}}{U^{s}} \quad \frac{U^{s}}{S^{s}} \quad \frac{S^{s}}{P} \quad P$$
$$+ \quad \frac{H^{d}}{I^{d}} \quad \frac{I^{d}}{I^{d}} \quad \frac{U^{d}}{S^{d}} \quad \frac{D^{s}}{P} \quad P$$

assuming that each factor is an independent function (process) of age:

$$H(a) = h^{s}(a) \quad i^{s}(a) \quad u^{s}(a) \quad (1 - d(a)) \quad P(a) + h^{d}(a) \quad i^{d}(a) \quad u^{d}(a) \quad d(a) \quad P(a)$$

Observing identity (for every age group):

$$H = H^{s} + H^{d} = \frac{H^{s}}{I^{s}} \quad \frac{I^{s}}{U^{s}} \quad \frac{U^{s}}{S^{s}} \quad \frac{S^{s}}{P} \quad P$$
$$+ \quad \frac{H^{d}}{I^{d}} \quad \frac{I^{d}}{I^{d}} \quad \frac{U^{d}}{S^{d}} \quad \frac{D^{s}}{P} \quad P$$

assuming that each factor is an independent function (process) of age:

$$H(a) = h^{s}(a) \quad i^{s}(a) \quad u^{s}(a) \quad (1 - d(a)) \quad P(a) + h^{d}(a) \quad i^{d}(a) \quad u^{d}(a) \quad d(a) \quad P(a)$$

1:

Observing identity (for every age group):

$$H = H^{s} + H^{d} = \frac{H^{s}}{I^{s}} \quad \frac{I^{s}}{U^{s}} \quad \frac{U^{s}}{S^{s}} \quad \frac{S^{s}}{P} \quad P$$
$$+ \quad \frac{H^{d}}{I^{d}} \quad \frac{I^{d}}{I^{d}} \quad \frac{U^{d}}{S^{d}} \quad \frac{D^{s}}{P} \quad P$$

assuming that each factor is an independent function (process) of age:

$$H(a) = h^{s}(a) \quad i^{s}(a) \quad u^{s}(a) \quad (1 - d(a)) \quad P(a)$$

 $+ \quad h^{d}(a) \quad i^{d}(a) \quad u^{d}(a) \quad d(a) \quad P(a)$

Observing identity (for every age group):

$$H = H^{s} + H^{d} = \frac{H^{s}}{I^{s}} \quad \frac{I^{s}}{U^{s}} \quad \frac{U^{s}}{S^{s}} \quad \frac{S^{s}}{P} \quad P$$
$$+ \quad \frac{H^{d}}{I^{d}} \quad \frac{I^{d}}{I^{d}} \quad \frac{U^{d}}{S^{d}} \quad \frac{D^{s}}{P} \quad P$$

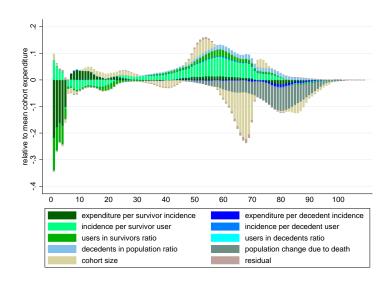
assuming that each factor is an independent function (process) of age:

$$H(a) = h^{s}(a) \quad i^{s}(a) \quad u^{s}(a) \quad (1 - d(a)) \quad P(a)$$

 $+ \quad h^{d}(a) \quad i^{d}(a) \quad u^{d}(a) \quad d(a) \quad P(a)$

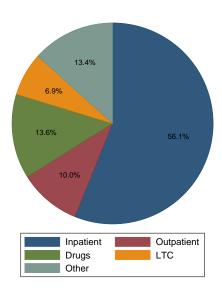
- costs of unit of treatment (expenditure per incident)
 - of survivor user $(h_a^{s,u} = \frac{H_a^s}{I_a^s})$,
 - of decedent user $(h_a^{d,u} = \frac{H_a^d}{I_a^d})$,
- intensity of treatment (incidents per user)
 - survivor $(i_a^s = \frac{I_a^s}{U^s})$
 - decedent $(i_a^d = \frac{I_a^d}{IId})$
- prevalence of treatment (users ratio in the population)
 - survivors $(u_a^s = \frac{U_a^s}{S^s})$
 - decedents $(u_a^d = \frac{U_a^d}{D^d})$
- share of decedents (death rate) ($d_a = \frac{D_a}{P_a}$)
- ightharpoonup population size (P_a)

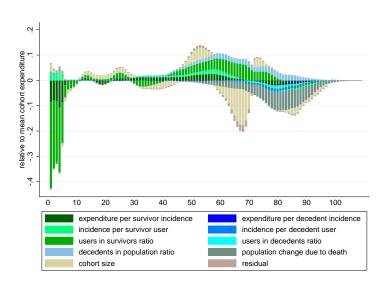
- costs of unit of treatment (expenditure per incident)
 - of survivor user $(h_a^{s,u} = \frac{H_a^s}{I_a^s})$,
 - of decedent user $(h_a^{d,u} = \frac{H_a^d}{I_a^d})$,
- intensity of treatment (incidents per user)
 - lacktriangle survivor ($i_a^s=rac{I_a^s}{U_a^s}$)
 - decedent $(i_a^d = \frac{I_a^d}{U^d})$
- prevalence of treatment (users ratio in the population)
 - survivors $(u_a^s = \frac{U_a^s}{S^s})$
 - decedents $(u_a^d = \frac{U_a^d}{D^d})$
- share of decedents (death rate) $(d_a = \frac{D_a}{P_a})$
- ightharpoonup population size (P_a)


- costs of unit of treatment (expenditure per incident)
 - \blacktriangleright of survivor user ($h_a^{s,u}=\frac{H_a^s}{I_a^s})$,
 - of decedent user $(h_a^{d,u} = \frac{H_a^d}{I_a^d})$,
- intensity of treatment (incidents per user)
 - survivor $(i_a^s = \frac{I_a^s}{U^s})$
 - decedent $(i_a^d = \frac{I_a^d}{IId})$
- prevalence of treatment (users ratio in the population)
 - survivors $(u_a^s = \frac{U_a^s}{S^s})$
 - decedents $(u_a^d = \frac{U_a^d}{D^d})$
- ▶ share of decedents (death rate) ($d_a = \frac{D_a}{P_a}$)
- ightharpoonup population size (P_a)

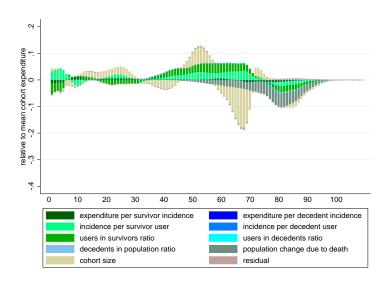
- costs of unit of treatment (expenditure per incident)
 - of survivor user $(h_a^{s,u} = \frac{H_a^s}{I_a^s})$,
 - of decedent user $(h_a^{d,u} = \frac{H_a^d}{I_a^d})$,
- intensity of treatment (incidents per user)
 - lacktriangle survivor $(i_a^s=rac{I_a^s}{U_a^s})$
 - decedent $(i_a^d = \frac{I_a^d}{I^{Jd}})$
- prevalence of treatment (users ratio in the population)
 - survivors $(u_a^s = \frac{U_a^s}{S^s})$
 - decedents $(u_a^d = \frac{U_a^d}{D^d})$
- share of decedents (death rate) $(d_a = \frac{D_a}{P_a})$
- ightharpoonup population size (P_a)

- costs of unit of treatment (expenditure per incident)
 - of survivor user $(h_a^{s,u}=rac{H_a^s}{I_a^s})$,
 - of decedent user $(h_a^{d,u} = \frac{H_a^d}{I_a^d})$,
- intensity of treatment (incidents per user)
 - survivor $(i_a^s = rac{I_a^s}{U_a^s})$
 - decedent $(i_a^d = \frac{I_a^d}{U_a^d})$
- prevalence of treatment (users ratio in the population)
 - survivors $(u_a^s = \frac{U_a^s}{S^s})$
 - decedents $(u_a^d = \frac{U_a^d}{D_a^d})$
- ▶ share of decedents (death rate) ($d_a = \frac{D_a}{P_a}$)
- ightharpoonup population size (P_a)

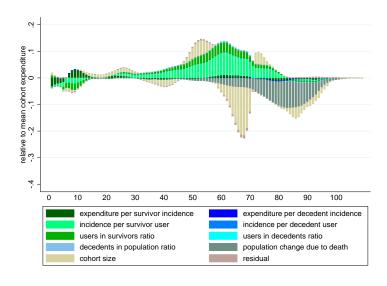

HCE in general driven by intensity of care

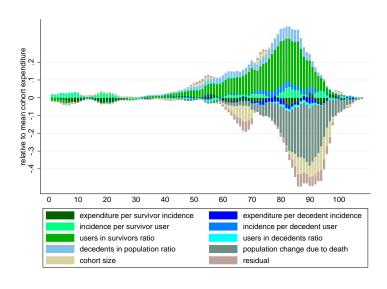


Hospital outlays dominate HCE



Hospital expenditures driven by prevalence of illness .


Ambulatory care driven by intensity and prevalence


Drug spendings driven by intensity of use

LTC driven by prevalence and death rate

- Morbidity pattern (prevalence and intensity of treatment) is crucial for agedependence of HCE
- Mortality drops without a change in morbidity (due to treatment) lead to steepening of HCE with age
- Future changes of morbidity patterns and disease-specific treatment crucial for consequences of ageing on the HCE
- The intensity and unit costs of treatment stop rising at the age-span 70-80

- Morbidity patterns (prevalence and intensity of treatment) are crucial for agedependence of HCE
- Mortality drops without a change in morbidity (due to treatment) lead to steepening of HCE with age
- Future changes of morbidity patterns and disease-specific treatment crucial for consequences of ageing on the HCE
- The intensity and unit costs of treatment stop rising at the age-span 70-80

- Morbidity patterns (prevalence and intensity of treatment) are crucial for agedependence of HCE
- Mortality drops without a change in morbidity (due to treatment) lead to steepening of HCE with age
- Future changes of morbidity patterns and disease-specific treatment crucial for consequences of ageing on the HCE
- The intensity and unit costs of treatment stop rising at the age-span 70-80

- Morbidity patterns (prevalence and intensity of treatment) are crucial for agedependence of HCE
- Mortality drops without a change in morbidity (due to treatment) lead to steepening of HCE with age
- Future changes of morbidity patterns and disease-specific treatment crucial for consequences of ageing on the HCE
- The intensity and unit costs of treatment stop rising at the age-span 70-80

maciej.lis@ibs.org.pl