

Real Wage and Labor Supply in a Quasi Life-cycle Framework: A Macro Compression by Swedish National Transfer Accounts (1985-2003)

HAODONG QI (ANDY KIN)

CENTRE FOR ECONOMIC DEMOGRAPHY

Background

Population ageing

 Challenge: the growing per worker cost of providing a given age-vector of per capita benefits (Lee and Edwards, 2001)

One of the Solutions: Increase Labor Supply

Some OECD Stats

For Sweden 2000-11

Continous Decline in Youth LFP

• 65+ remain constantly at 10%

Scientific Background

 Constant Elasticity of Substitution in Overlapping Generation Model

- Little consensus on estimated elasticity
- The equivalence: Estimated and calibrated parameters
- A vector of life-cycle parameter

Research Questions

 How have age-profiles of real wage and labor supply evolved overtime?

 How does the labor supply response to real wage vary over the life-cycle?

Theory predictions on wage differentials over age

- Efficiency wage hypothesis (Yellen, 1984)
- The shirking model (Calvo, 1979)
- -> Wage-productivity discrepancy
- Uneven pay schedule between the young and old workers w.r.t productivity (Skirbekk, 2003).
- Such pay schedual is pareto efficient w/h mandatory retirement (Lazear, 1981)
- More time for senior to bid up wage (Harris and Bengt, 1982)
- Union attach great weight on old workers (Pissarides, 1989)

Theory predictions on Labor supply w.r.t wage

Static Model

- Individual Labor Supply Curve
- Inter-temporal Substitution Hypothesis

A life-cycle labor supply function

Max U in the form of

$$\frac{1}{1 - 1/\gamma} \left(c_x^{1 - 1/\rho} + \alpha l_x^{1 - 1/\rho}\right)^{\frac{1 - 1/\gamma}{1 - 1/\rho}}$$

s.t.
$$a_x r_x + w_x (1 - l_x) - c_x$$

A life-cycle labor supply function

• After ..., we get,

$$\ln(N_x) = \ln(N_{x-1}) - (\frac{1-\bar{N}}{\bar{N}})\gamma \ln(1+r_x) + (\frac{1-\bar{N}}{\bar{N}})\gamma \left(\frac{\rho + \alpha^{\rho}\gamma}{\gamma + \alpha^{\rho}\gamma}\right) \ln\left(\frac{w_x}{w_{x-1}}\right)$$

$$\ln(N_x) = \ln(N_{x-1}) - \beta_1 \ln(1 + r_x) + \beta_2 \ln\left(\frac{w_x}{w_{x-1}}\right)$$

Assuming α=1, we get,

$$\frac{\rho}{\gamma} = \frac{2\beta_2}{\beta_1} - 1$$

Hypothesis

Hypothesis 1: If $\frac{\beta_2}{\beta_1} > 1$, substitution effect dominates within period, and intratemporal elasticity outweighs intertemporal elasticity of labor supply w.r.t wage increase, i.e $\frac{\rho}{\gamma} > 1$.

Hypothesis 2: If $\frac{1}{2} < \frac{\beta_2}{\beta_1} < 1$, substitution effect dominates within period, but intratemporal elasticity is outweighed by intertemporal elasticity of labor supply w.r.t wage increase, i.e $0 < \frac{\rho}{\gamma} < 1$.

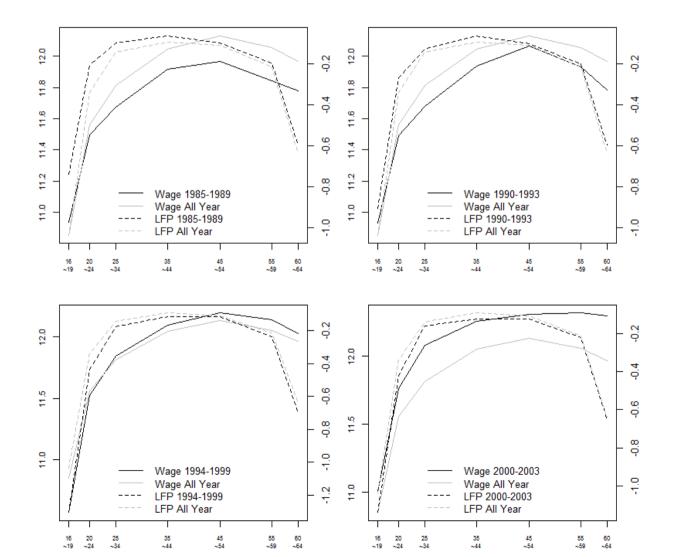
Hypothesis 3: If $0 < \frac{\beta_2}{\beta_1} < \frac{1}{2}$, income effect dominates within period, but intratemporal elasticity is outweighed by intertemporal elasticity of labor supply w.r.t wage increase, i.e $-1 < \frac{\rho}{\gamma} < 0$.

Hypothesis 4: If $\frac{\beta_2}{\beta_1} < 0$, income effect dominates within period, and intratemporal elasticity outweighs intertemporal elasticity of labor supply w.r.t wage increase, i.e $\frac{\rho}{\gamma} < -1$.

Hypothesis 5: If $\frac{\beta_2}{\beta_1} = 1$, i.e. $\beta_2 = \beta_1$, intratemporal elasticity equals intertemporal elasticity of labor supply w.r.t wage increase, i.e $\frac{\rho}{\gamma} = 1$.

Data

- Labor Income (YL) from National Transfer Accounts Sweden 1985-2003
- LFP and Employment Rate from SCB
- $wage = YL/(LFP \times EMPL)$
- Age groups: 16-19, 20-24, 25-34, 35-44, 45-54, 55-59, and 60-64


Method

 Lee-carter model: Describe the changing age profiles overtime

 Age-specific time series analysis: examine differences in labor supply responses to wage over life-cycle

Results: Changing age profiles

Result: Elasticity of labor supply w.r.t wage

Ta	ble 2: Estim	ation of E	quation (14)	by 2SLS (w	ith Restric	etion: $\theta_{x,3} =$	$= \theta_{x,4})$		
	All Age	16-19	20-24	25-34	35-44	45-54	55-59	60-64	
VARIABLES		$\ln\left(N_{x,t}\right)$							
(, , ,)									
$\ln\left(\frac{w_{x,t}}{w_{x,t-1}}\right)$	0.667***	0.283*	0.350*	0.401***	0.310	-0.0313	-0.0541	-0.937*	
(2,0 1)	(0.171)	(0.154)	(0.183)	(0.0971)	(0.234)	(0.0847)	(0.250)	(0.474)	
$ln(1+r_t)$	-0.592***	-1.515*	-0.734***	-0.352***	-0.312*	-0.0315	-0.177	0.282	
	(0.106)	(0.712)	(0.211)	(0.0756)	(0.149)	(0.0608)	(0.158)	(0.641)	
$ \ln\left(N_{x,t-1}\right) $	1.183***	0.955***	1.033***	1.154***	1.162***	0.915***	0.848***	0.496*	
	(0.0713)	(0.0648)	(0.0574)	(0.0751)	(0.132)	(0.157)	(0.157)	(0.256)	
Constant	-2.785**	0.583	-0.409	-2.127*	-2.253	1.160	1.958	6.288*	
	(1.087)	(0.780)	(0.743)	(1.037)	(1.845)	(2.127)	(2.010)	(3.176)	
Observations	18	18	18	18	18	18	18	18	
R-squared	0.967	0.941	0.965	0.962	0.934	0.777	0.787	0.768	
F-test (p-value)	0.0995	0.864	0.752	0.674	0.650	0.0226	0.108	0.300	
$\frac{\rho}{\gamma}$	1.254	-0.627	-0.0476	1.277	0.989	-2.986	-1.611	-7.648	
1	(0.369)	(0.327)	(0.588)	(0.532)	(0.923)	(7.646)	(3.264)	(12.31)	

Result: Elasticity of labor supply w.r.t wage

	All Age	16-19	20-24	25-34	35-44	45-54	55-59	60-64	
VARIABLES	$\ln\left(N_{x,t}\right)$								
$\ln\left((1+r_t)\frac{w_{x,t-1}}{w_{x,t}}\right)$	-0.575***	-0.432***	-0.516***	-0.366***	-0.313**	-0.0153	-0.228	1.175**	
(2,0)	(0.102)	(0.125)	(0.137)	(0.0699)	(0.138)	(0.0559)	(0.159)	(0.502)	
$ \ln\left(N_{x,t-1}\right) $	1.160***	0.960***	1.047***	1.138***	1.162***	0.842***	0.947***	0.293	
, , ,	(0.0615)	(0.0676)	(0.0577)	(0.0672)	(0.108)	(0.120)	(0.146)	(0.258)	
Constant	-2.434**	0.472	-0.609	-1.901*	-2.264	2.145	0.679	8.775**	
	(0.938)	(0.812)	(0.745)	(0.927)	(1.511)	(1.635)	(1.863)	(3.200)	
Observations	18	18	18	18	18	18	18	18	
R-squared	0.966	0.931	0.960	0.961	0.934	0.768	0.756	0.702	
F-test (p-value)	0.511	0.145	0.206	0.595	0.990	0.471	0.174	0.0656	

Conclusion

- Youth labor supply: ISH dominates
- Old age labor supply: intra-temporal and income effect dominate
- Reconsidering the pay schedule w.r.t. labor supply, is it optimal?
- Policy implication: reforms of tax, social security as well as union policy should target on adjusting the pay schedule, i.e. increase net income for the young, lower it for the old
- Scientific implication: the array of life-cycle parameters is needed for OLG modeling

