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This paper explores how retirement timing, together with life-cycle saving and human
capital investment in children, responds to rising longevity in a recursive model with
altruistic agents. We find that rising longevity raises the retirement age. If initial life
expectancy is not too high, rising longevity also raises human capital investment in
children and the saving rate. Through these channels, rising longevity can be conducive to
long-run economic growth. A binding mandatory retirement age reduces human capital
investment and the growth rate, raises the saving rate, and reduces welfare.
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1. INTRODUCTION

Mortality rates have been declining dramatically in almost all countries for
decades. The consequences of mortality decline on capital accumulation and eco-
nomic growth have attracted a great deal of attention. See, for example, Ehrlich and
Lui (1991), Auerbach and Kotlikoff (1992), Hu (1995), de la Croix and Licandro
(1999), Boucekkine, de la Croix, and Licandro (2002), Bloom, Canning, and
Graham (2003), Zhang, Zhang, and Lee (2001, 2003), Echevarrı́a (2004), and
Zhang and Zhang (2005). Most of these studies have ignored the response of
retirement timing to declining mortality or rising longevity. By contrast, the nu-
merous labor studies of retirement behavior surveyed by Lumsdaine and Mitchell
(1999) have ignored the role of rising longevity.
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FIGURE 1a. U.S. male labor force participation rates.

To understand the relevance of the issue, let us take a look at the movement of
the retirement age in the United States for the past few decades. Although it is hard
to gauge it accurately, labor participation rates of people aged 60 or over have often
been used in the literature as an approximate measure. It is well noted that male
labor force participation rates have declined since the 1970s, but it is less noted that
the decline has slowed down or even changed in the opposite direction recently.
As illustrated in Figure 1a [based on U.S. Bureau of Labor Statistics (2001)], the
participation rates of males aged 60 or over had declined before the late 1980s, but
have been stabilized since and have been rising slightly in the late 1990s. Indeed,
the increasing trend is very pronounced even since the early 1990s for the age
group 65–69. In the meanwhile, the rise in the participation rates of females was
more dramatic, driving up the total participation rate [see U.S. Bureau of Labor
Statistics (2001); Hurd (1997)].1 In the 1990s, the rise in female participation
rates was small for those under age 45 (as the rates were already high), but large
for the older groups as shown in Figure 1b. Female labor is now close to half of
the total labor force [also see U.S. Census Bureau (2000, 2001)]. Although the
converging participation rates by gender may largely reflect the diminishing gap in
wages between men and women, the steady rises in the participation rates of both
males and females aged 60 or over in the late 1990s need other explanations that
may include mortality decline. As mortality is expected to fall further in coming
decades, some observers, for example, Lee and Skinner (1999), have speculated
that the age of retirement will go up; see also the statistical predictions of higher
participation rates in 2008 for both males and females over age 55 by the U.S.
Census Bureau (2000).

A related policy issue is the institution of the mandatory retirement age, which
differs substantially between developing countries with low life expectancy (e.g.,
50–55 in many African countries) and developed countries (e.g., 60–69 in North
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FIGURE 1b. U.S. female labor force participation rates.

America and West Europe). However, there appear to have been two trends in
different directions concerning the mandatory retirement age in North America
and Europe. One has been to encourage or regulate early retirement in Europe,
whereas the other has been to raise or eliminate the mandatory retirement age in the
United States (the 1986 Amendments of the Age Discrimination in Employment
Act). It is interesting to know which trend is consistent with household optimizing
behavior.

The body of existing studies on how retirement timing changes with rising
longevity is relatively thin. Boucekkine et al. (2002) and Echevarrı́a (2004) find
that rising longevity raises the retirement age and time for schooling. In addition
to the positive effect of longevity on the retirement age, Hu (1995) and Bloom
et al. (2003) also find that rising longevity raises physical capital per person or
the saving rate. The positive effects of longevity on schooling time and savings
are consistent with the empirical evidence from cross-country data in Zhang
and Zhang (2005), in the whole sample or the sample of countries with initial
life expectancy in 1960 below 65. However, these effects of longevity become
statistically insignificant for countries with initial life expectancy in 1960 above
65. All of these studies on longevity versus retirement timing have used the life-
cycle model of consumption smoothing and ignored family structure consisting of
different generations. In their framework, saving and education investment are all
aimed at enhancing one’s own income later. To the policy front, all these studies
have ignored mandatory retirement and its consequence on capital accumulation.

In the present paper, we will investigate rising longevity and retirement timing
by taking a different approach in a family setting. Our approach extends the
dynastic family model by adding old-age consumption to motivate parents’ own
life-cycle saving, and exploits its parental altruism toward the welfare of children to
motivate investment in children’s education. We believe that the trade-off between
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life-cycle consumption and investment in children’s education is a major concern
of household decisions. In particular, whether eduction investment is made for
oneself or for children differs in that the former can compensate the loss of one’s
own wage income from forgoing time for education but the latter cannot. This
would intuitively lead to different scenarios for households to balance saving and
education investment. It would be interesting to see whether our complemen-
tary approach can yield different or similar results. Indeed, Bloom et al. (2003,
p. 326) point out that “the greatest worry is that actual savings decisions are
made by households, not individuals, and that longevity and demographic effects
operate through changes to family structure rather than individual consumption
smoothing.”

Another feature of a dynastic family model is that its decentralized equilibrium
solution can be Pareto optimal as would be chosen by a social planner who
considers the welfare of all generations, in contrast to a life-cycle model with
overlapping generations of selfish agents whereby the equilibrium solution is
usually not. This feature would help us determine the welfare consequence of
mandatory retirement regulation, together with an analysis of how mandatory
retirement affects capital accumulation.

In agreement with the life-cycle model, we find that a rise in life expectancy
raises the retirement age. Unlike the life-cycle model, however, the positive effects
of a rise in life expectancy on the saving rate and human capital investment are
valid if initial life expectancy is not too high. Our simulation results also indicate:
(i) the magnitude of these effects can be very substantial; (ii) these effects are
mainly made when life expectancy rises from low to mid levels. Moreover, a bind-
ing mandatory retirement age reduces human capital investment and the growth
rate, raises the saving rate, and reduces welfare. The magnitude of these distortions
by mandatory retirement can be very large as well.

The remainder of the paper proceeds as follows. Section 2 focuses on retirement
timing and saving in a simple life-cycle model of neoclassical growth for compara-
bility with the literature. Section 3 provides the results in a dynastic family model
of endogenous growth that also includes human capital (the core model). Sec-
tion 4 applies the core model to the analysis of the impact of mandatory retirement.
The last section provides some concluding remarks and policy suggestions.

2. SAVING AND RETIREMENT TIMING IN A SIMPLE LIFE-CYCLE MODEL

Before presenting the core model in the next section, it is useful to begin with a
simple life-cycle model without human capital investment to be more comparable
to the literature. The model has an infinite number of periods and overlapping
generations of identical agents who live for three periods. The simplified time
structure over lifetime, compared to the related studies in a continuous time
framework, will allow us to incorporate human capital investment in children
in a recursive model in the next section. In this setup, every agent has one unit of
labor time endowment in each of the two periods in adulthood (the second and
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third periods of life). Survival from childhood to young adulthood is certain, but
it is uncertain from the end of young adulthood to old adulthood at an exogenous
rate p ∈ (0, 1).2 A rise in p reflects a fall in mortality or a rise in longevity.
Every young adult has exactly one child.3 Normalizing the size of the children
population and the size of the young adult population to unity in every period, the
size of the old-aged population is then p, that is, the fraction of the young adult
population that survives to old age. The size of the total population is therefore
2 + p.

In middle age, an agent supplies one unit of labor inelastically, and allocates
wage income into middle-age consumption C and saving S for old-age consump-
tion D. In old age, time is divided between leisure Z and labor 1−Z. We interprete
leisure in old age as the time spent on retirement as in existing studies on retire-
ment ages and longevity [see, e.g., Boucekkine et al. (2002); Bloom et al. (2003);
Echevarrı́a (2004)]. This compartmentalization of leisure at the old age is based on
the fact that labor participation rates in prime ages are very high and stable [above
90% for men and around 80% for women between ages 25–50 in the United States
according to the U.S. Census Bureau (2000)]. Realistically, leisure defined in this
way becomes essential when an individual becomes old, because working with
the same intensity is harder for old-aged than for middle-aged agents.4

There is an annuity market that channels saving to investment in physical capital.
All saving St is traded for annuity income It conditional on survival to old age.
Annuity firms invest St in the production sector and receive Rt+1St in the next
period where R is one plus the interest rate. Assume that the annuity market is
competitive such that total annuity income paid out, pIt , equals total revenue,
Rt+1St . As a result, Rt+1/p is the rate of return on per unit annuity investment
by households, It/St . This rate of return would depend inversely on the rate of
survival if the interest factor were held constant. Intuitively, a rise in the survival
rate raises the price of buying a given stream of annuitized income; namely, the
same amount of saving can only buy less annuitized income at a higher survival
rate.

The agent’s budget constraints are given by

Ct = Wt − St , (1)

Dt+1 = Rt+1St/p + (1 − Zt+1)Wt+1, (2)

where W is the wage rate per unit of labor.
The preference of the representative agent in this simple life-cycle model is

assumed to be

Ut = ln Ct + p(ln Dt+1 + η ln Zt+1), η > 0, (3)

where η is the taste for leisure in old age. The first-order conditions of maximizing
the agent’s utility in (3) with respect to saving and leisure are 1/Ct = Rt+1/Dt+1

and Wt+1/Dt+1 = η/Zt+1, respectively.
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Aggregate labor supply, denoted by Et , includes 1 unit from young workers and
p(1−Z) from old workers, that is, Et = 1+p(1−Zt).5 The production function
is given by

Yt = BKθ
t E1−θ

t , B > 0, 0 < θ < 1, (4)

where K is physical capital, B the productivity coefficient, and θ the share pa-
rameter of capital. For simplicity, we assume full depreciation of physical capital
within each period in production. Factors in production are compensated by their
marginal products: Wt = (1 − θ)Bkθ

t and Rt = θBkθ−1
t , where kt = Kt/Et is the

ratio of physical capital to labor. Markets clear in this economy when Kt+1 = St .
The equilibrium solution in this simple life-cycle model is found to be

Zt+1 = Z = η(θ + p)

p(1 − θ + η)
if η < p(1 − θ)/θ; Z = 1 if η ≥ p(1 − θ)/θ,

(5)

St = �sWt, �s = pθ [1 + p(1 − Z)]

θ(1 + p)[1 + p(1 − Z)] + p(1 − θ)(1 − Z)
, (6)

St

Yt

= pθ(1 − θ)(1 − θ + η)

θ(1 + p)(1 − θ + η) + (1 + pθ)[p(1 − θ) − ηθ ]
. (7)

From (5), leisure may have a corner solution when the taste for leisure is strong
enough or when the rate of survival is too low. When it has an interior solution, the
time spent on retirement is decreasing in the rate of survival, p. This reduction in
the duration of retirement arises from opposing forces of rising longevity. On the
one hand, there is a positive effect of rising longevity on the duration of retirement
as seen in the numerator of the expression for Z in (5), because rising longevity
increases the need for both consumption and leisure in old age. On the other hand,
rising longevity tends to delay retirement by increasing saving (to be seen later)
and by reducing the rate of return to annuity investment. The increase in saving
tends to raise the wage rate, and thus induces later retirement. The decline in the
rate of return to annuity investment also means that agents must save more or
work longer to prevent old-age consumption from falling. (Note that the expected
duration of retirement, pZ, can increase with p even though Z falls with p, as long
as the elasticity of leisure in old age to a change in the rate of survival is less than
100%.) Obviously, when a rise in longevity reduces the duration of retirement,
aggregate labor supply 1 +p(1 −Z) increases further than the direct contribution
of a rise in p to the number of old workers.

From (7), d(S/Y )/dp is signed by 1 − p2 that is always positive. In other
words, the ratio of total saving to total output is an increasing function of the rate
of survival in this model. From (6), it can also be easily verified that the ratio of
one’s saving to one’s middle-age labor income St/Wt is an increasing function of
the rate of survival (even more so than the ratio of saving to output). Intuitively,
expecting a longer life, middle-aged agents would have to save more for old-age
consumption if they held old-age labor supply constant, as in the conventional
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overlapping generations models with all old-age lifetime spent on retirement, that
is, Z = 1, and hence St/Wt = p/(1 + p).

Overall, when longevity rises, the population of old-aged survivors, who receive
the capital’s share of output in the economy, becomes larger. Each of them has to
expect a smaller amount of annuity income from saving, or to pay a higher price
for a unit of annuity income, leading to an adverse effect on old-age consumption.
To smooth life-cycle consumption and to keep a balance between consumption
and leisure (assuming both are normal goods), agents save more in middle age
and work longer in old age. This can be seen in the first-order conditions of the
household problem where a rise in the rate of survival has a direct negative effect
on old-age consumption Dt+1 but no direct effect on both middle-age consumption
Ct and old-age leisure Zt+1.

The ratio of capital to labor evolves according to kt+1 = �sWt/Et+1 = �s(1 −
θ)Bkθ

t /[1+p(1−Z)] that converges to k∞ = {�s(1−θ)B/[1+p(1−Z)]}1/(1−θ).
In this neoclassical growth model, there is a steady-state level of per capita output,
Y∞/(2 + p) = Bkθ

∞[1 + p(1 − Z)]/(2 + p). There are three factors through
which rising longevity may affect the steady-state level of per capita output.
First, the positive response of saving, and hence the ratio of capital to labor, to
rising longevity contributes to a higher steady-state level of per capita output.
Second, the positive response of labor supply to rising longevity is conducive to
higher per capita output. Third, a bigger population resulting from rising longevity
lowers the steady-state level of per capita output. The sign of dk∞/dp is the
same as the sign of d(S/Y )/dp, which is positive as seen above. The sign of
d{[1 + p(1 − Z)]/(2 + p)}/dp is determined by (1 − η), which is positive if
η < 1. Thus, a sufficient condition for per capita output to respond positively to
rising longevity is that the value of the taste for leisure is less than one, that is,
valuing leisure less than consumption.

We sum up the results in this section here:

PROPOSITION 1. For an interior solution in the life-cycle model, a rise in
life expectancy reduces the duration of retirement, Z, and increases the saving
rate, St/Yt . Also, if agents value leisure less than consumption, then a rise in life
expectancy increases the steady-state level of output per capita.

The results in Proposition 1 generated from the simple model are similar to
those in Bloom et al. (2003) that use a continuous time framework, suggesting
that our simplification itself does not lead to any essential difference in results as
they all belong to the life-cycle model. We now turn to the recursive model with
altruistic parents.

3. THE CORE MODEL WITH HUMAN CAPITAL INVESTMENT
IN CHILDREN

This section considers human capital investment in children motivated by parental
altruism toward the welfare of children in a recursive dynastic model. This model
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enables us to investigate how retirement timing interacts with life-cycle saving and
human capital investment in children in response to rising longevity. Because this
model with two types of reproducible capital generates sustainable growth, we can
also investigate how rising longevity affects the growth rate through influencing
retirement timing, saving, and human capital investment.

In this core model, children learn to accumulate human capital H . Agents divide
time in middle age between working 1 − M and educating their children M , and
allocate wage income and time in old age in the same way as in Section 2. The
agent’s budget constraints become

Ct = (1 − Mt)WtHt − St , (8)

Dt+1 = Rt+1St/p + (1 − Zt+1)Wt+1Ht, (9)

where W is the wage rate per unit of effective labor, rather than raw labor in
Section 2.

The preference of the representative agent now also includes parental altruism
toward children:

Vt = Ut + αVt+1, 0 < α < 1, (10)

where Vt is the welfare of the agent, Ut is his period utility defined in (3),
and Vt+1 is the welfare of his child. Parameter α is the subjective discounting
factor on the welfare of his child, or the taste for the welfare of his child. The
recursive dynastic preference has an advantage over the conventional nonrecursive
preference in overlapping generations models like the life-cycle model, in that
the former can be applied to a social planner that considers the welfare of all
generations. Consequently, with the dynastic preference, individual families and
the social planner will choose the same retirement age in our model, a criterion to
judge the welfare implication of mandatory retirement later.

As in Becker, Murphy, and Tamura (1990), the human capital of a child is
obtained through his parent’s time investment:

Ht+1 = AMtHt , A > 0, (11)

where A is the productivity parameter in the education sector.
Aggregate labor supply includes 1−M units from young workers and p(1−Z)

from old workers. Effective labor supply is now given by Et = (1 − Mt)Ht +
p(1 − Zt)Ht−1. The production function of the final good is the same as in (4).

Starting with initial human capital Ht , the representative agent’s problem start-
ing in period t corresponds to the following concave programming problem:

V (Ht ;�t) = max
Ht+1,St ,Zt+1

{ln[WtHt − (Ht+1/A)Wt − St ] + p ln[Rt+1St/p

+ (1 − Zt+1)Wt+1Ht ] + pη ln Zt+1 + αV (Ht+1;�t+1)} (12)

taking the sequence of �t ≡ (Wt , Rt , p) as given. In this setup, we have substituted
(8) and (9) into (10) for middle-age consumption and old-age consumption, and
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used (11) to replace MtHt with Ht+1/A. From the time-dependent recursive
specification above to the fixed point in the value function, the standard Blackwell
sufficient conditions apply here to apply the contraction mapping theorem and
thus obtain a fixed point in the value function. We shall establish the existence and
the uniqueness of the solution later.

Given the logarithmic utility function, we expect time-invariant proportional
allocations of time and income for a given p, that is, constant M and Z, and
constant fractions of middle-age income spent on middle-age consumption over
time, denoted by �c ≡ Ct/[(1 − Mt)WtHt ], and on savings, by �s . The first-
order conditions can be derived routinely (see part A of the appendix). These
conditions, the wage and interest rate equations, the budget constraints and the
market clearing condition characterize the equilibrium of this economy. From
these equilibrium conditions, we obtain the following relationships for the time
allocation and proportional income allocation:

�s = p[Z − η(1 − Z)]

(1 + p)Z − ηp(1 − Z)
, (13)

Aθη(1 − M)M + θηp(1 − Z) = p(1 − θ)[Z − η(1 − Z)], (14)

(M − α)[(1 + p)Z − ηp(1 − Z)] = αηp(1 − Z)(1 − M). (15)

The equilibrium optimal allocation rules are implicitly determined in (13)–(15).
Because there is no reduced form solution for the optimal allocation in general in
this system of equations, it is essential to see whether there exists any equilibrium
solution and whether the solution is unique before we proceed any further.

PROPOSITION 2. There exists a unique solution for (�s,M,Z) such that
0 < �s < 1, α(1 + p)/[1 + p + pη(1 − α)] < M < 1, and Z > 0. In particular,
M = α and �s = p/(1 + p) at Z = 1.

Proof. See part B of the appendix.

The existence of a unique equilibrium solution in this model allows us to
investigate the complicated relationships among retirement timing, human capital
investment in children, and life-cycle saving. Although the relationships are jointly
determined and implicit in general, at the corner Z = 1 (because of a strong taste
for leisure η) we can obtain reduced-form solutions for the saving rate and the
fraction of time invested in children’s human capital, that is, �s = p/(1 + p)

and M = α as in a conventional overlapping generations model with zero labor
supply in old age. In this special case, a rise in longevity would clearly have a
positive effect on the saving rate for consumption smoothing but no effect on
the time allocation between work and education. The absence of any effect of
longevity on human capital investment without retirement choice is also true in
the special cases of Ehrlich and Lui (1991) and Zhang et al. (2001) when treating
fertility as exogenously given. The reason why time investment in child education
is unresponsive to rising longevity with a fixed retirement age is that parents
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would suffer a loss in their own wage income from investing more time in child
education, and consequently a loss in their consumption in all life stages. As a
result, the marginal utility of parental consumption would exceed the marginal
utility of investment in children. This scenario differs from a life-cycle model like
Boucekkine et al. (2002) and Echevarrı́a (2004), in which the trade-off is between
life-cycle saving and investment in one’s own education investment for higher
wage income later.

Outside the corner solution, the effect of rising longevity on the time allocation
is given by:

PROPOSITION 3. A rise in life expectancy raises the investment of time in
child education, M , if M < 1/2, but reduces the duration of retirement, Z, for
Z < 1.

Proof. See part C of the appendix.

The positive response of human capital investment in the model with endoge-
nous retirement is consistent with the estimated relationship between school en-
rollment and life expectancy when all countries in the whole sample or those
with initial life expectancy below 65 are included [Barro and Sala-i-Martin (1995,
Ch. 12); Zhang and Zhang (2005)]. However, this positive effect on human capital
investment is only warranted in Proposition 3 when human capital investment
in children takes less than half of parental time. It is thus possible that, when
life expectancy is initially high and hence parents have already spent much time
educating their children, any further rise in life expectancy may no longer have any
significant effect on human capital investment. Indeed, the estimated coefficient
on life expectancy in the education enrollment equation becomes statistically
insignificant for the group of countries with initial life expectancy in 1960 above
65 in Zhang and Zhang (2005).

In this dynastic family model where altruistic parents invest in children’s edu-
cation, the duration of retirement of the interior solution still responds negatively
to rising longevity as in the life-cycle model. In addition to the reasons given in
the previous section, the delay of retirement can help compensate for the loss in
parental labor income as a result of the increased time for child education driven
by rising longevity.

The effect of longevity on life-cycle saving is given here:

PROPOSITION 4. A rise in life expectancy raises the saving rate, �s , at least
if life expectancy is not too high.

Proof. See part D of the appendix.

The reason for a positive response of life-cycle saving to rising longevity is
similar to that mentioned in the life-cycle model, or in the conventional case
with all old-age time spent on retirement. Unlike the life-cycle model, however,
life-cycle consumption or saving is now traded off for investment in children’s
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human capital rather than for parents’ own human capital when allocating time
between earning wage income and education. In the life-cycle model, the loss in
wage income for one’s own schooling is compensated by a higher wage rate for
oneself, so that life-cycle saving and education investment can always increase with
life expectancy. In the present model, by contrast, the loss in parental wage income
for children’s education is not compensated. Thus, it is possible in this recursive
dynastic model that a further rise from a already high level of life expectancy may
have little effect on both the saving rate and education investment.

We now examine how longevity affects growth. Suppose that the rate of survival
rises unexpectedly in period 0 from p to p̃. Per capita output of the final good
equals Y−1/(2 + p) in time t = −1, and Yt/(2 + p̃) afterward for t ≥ 0. From
(4), the growth rate of per capita output from period −1 to 0, that is, 1 + G0 ≡
[Y0/(2 + p̃)]/[Y−1/(2 + p)], can be written as

1 + G0 =
(

K0

K−1

)θ (
E0

E−1

)1−θ (
2 + p

2 + p̃

)
. (16)

The unexpected rise in life expectancy at t = 0 does not affect decisions
made previously such as K−1, K0, and E−1. However, a higher p̃ at t = 0
lowers the growth rate G0 by accelerating population growth (2 + p̃)/(2 + p). It
also has opposing impacts on initial growth by changing aggregate labor supply
E0 = (1−M0)H0+p̃(1−Z0)H−1: a positive one directly through p̃, a negative one
indirectly through raising M0, and a positive one indirectly through reducing Z0. In
other words, a rise in life expectancy can promote growth in the initial period by in-
creasing the labor supply from old-age population (directly or indirectly via reduc-
ing leisure), but it can harm initial growth by reducing labor supply from middle-
age population (more time on education) and by accelerating population growth.

After the initial period (i.e. t > 0), the population growth effect on per capita
output growth disappears for a permanent rise in the rate of survival, whereas
the factor Et/Et−1 is equal to AM̃ for t > 0. Moreover, for t > 0, Ht−1/Et =
1/[(1 − M̃)AM̃ + p̃(1 − Z̃)], and thus we have

kt =
[

�̃s(1 − M̃)(1 − θ)B

(1 − M̃)AM̃ + p̃(1 − Z̃)

]
kθ
t−1,

which converges monotonically to

k∞ =
[

�̃s(1 − M̃)(1 − θ)B

(1 − M̃)AM̃ + p̃(1 − Z̃)

]1/(1−θ)

.

We may rewrite the growth equation for t > 0 as

ln(1 + Gt) = θ ln[�̃s(1 − M̃)(1 − θ)B] − θ(1 − θ) ln kt−1

+ (1 − θ) ln A + (1 − θ) ln M̃. (17)
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During the transitional periods after period 0, the rise in life expectancy affects
growth through the saving rate, the time spent on education, and the retirement
age. These factors also determine the ratio of physical capital to effective labor,
kt , that affects growth. In the long run, the steady-state growth rate equals the
growth rate of human capital accumulation AM that is increasing with longevity
for Z < 1. In sum, we have the following.

PROPOSITION 5. A rise in life expectancy initially has an ambiguous effect
on the growth rate of per capita income. However, it promotes the steady-state
growth of per capita income by increasing investment in human capital for Z < 1.

Overall, the negative growth effects of rising longevity through population
growth and labor supply are only a short-run phenomenon, and so is its positive
growth effect through a reduction in leisure, despite that their impacts on the level
of per capita output are long lasting as in Section 2. The positive growth effect
of rising longevity through raising human capital investment will dominate in the
long run.

What are the quantitative implications of rising longevity for the retirement
age, human capital investment, the ratio of saving to output �s(1 − M)AM(1 −
θ)/[AM(1 − M) + p(1 − Z)], and the long-run growth rate? To answer these
questions, we simulate the model and report the numerical results in Table 1.
Parameterization in this table is mainly chosen such that the simulated figures
are reasonably realistic, except that we adopt a widely used θ = 0.25 for the
physical capital’s share in output, and that p varies in a wide range from 0.1 to
0.9. Parameter λ measures the productivity of human capital in old age relative to
middle age, with λ = 1 standing for the case in which labor productivity does not
decline with age. Also, suppose one period in this model equals 30 years.

According to Table 1, as the rate of survival rises from 0.1 to 0.9, the time spent
on education rises from 25.1% to 30.5%, the time spent on retirement falls sharply

TABLE 1. Simulation results of rising longevity without mandatory retirement

α = 0.25, A = 6.0, B = 3.0, θ = 0.25, η = 0.18, λ = 1.0

Adult mortality Time on education Time in retirement Saving rate Annual growth
(p) (M, %) (Z, %) (S/Y, %) (G1/30

∞ , %)

0.1 25.11 73.95 6.28 1.38
0.2 25.65 47.04 9.44 1.45
0.3 26.33 38.13 11.33 1.54
0.4 27.05 33.68 12.57 1.63
0.5 27.78 31.00 13.44 1.72
0.6 28.50 29.21 14.07 1.80
0.7 29.19 27.93 14.53 1.89
0.8 29.85 26.95 14.88 1.96
0.9 30.50 26.19 15.14 2.03
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from 74% to 26.2%, the ratio of saving to output rises from 6.3% to 15.1%, and the
long-run growth rate rises from 1.38% to 2.03%. All these changes are substantial
in magnitude, and are mainly made when life expectancy rises from low to mid
levels. For further rises in life expectancy from a high level, these changes become
much smaller.

4. APPLICATION TO MANDATORY RETIREMENT

Mandatory retirement has been instituted in many countries due to age-specific
factors such as pension, health, and labor productivity. It may appear in different
forms: a government program or a collective agreement between unions and
employers. In this section, we only examine mandatory retirement in a simple
case where labor productivity is age-specific: human capital in old age declines to
λHt with λ ∈ (0, 1], with a depreciation factor 1 − λ.

Suppose that the mandatory retirement age is 3−T . The duration of mandatory
retirement is T ∈ [0, 1]: A rise in T means a lower mandatory retirement age.
Agents may choose early retirement by a fraction N of the old-age time 1 − T

before reaching the mandatory retirement age. Thus, the total retirement time
equals Z = T +(1−T )N , aggregate labor supply equals 1−M+p(1−T )(1−N),
and aggregate effective labor at time t equals Et = (1 − Mt)Ht + p(1 − T )(1 −
Nt)λHt−1. An agent’s budget constraint in middle age is the same as in Section 3,
whereas the budget constraint in old age becomes

Dt+1 = Rt+1St/p + (1 − T )(1 − Nt+1)Wt+1λHt . (18)

When the mandatory retirement age is not binding, that is N > 0, the solution for
the model is obviously the same as in Section 3. We thus focus on the case where
there is a binding mandatory retirement age, corresponding to N = 0, Z = T ,
Et = (1 − Mt)Ht + p(1 − T )λHt−1, and Dt+1 = Rt+1St/p + (1 − T )Wt+1λHt .
The solution for the time invested in education is implicitly determined by

(1 + p)θ [A(1 − M)M + p(1 − T )λ] + pλ(1 − T )(1 − θ)

= αp2λ(1 − T )(1 − θ)(1 − M)

M − α
. (19)

The saving rate is given by

�s = pθ [A(1 − M)M + p(1 − T )λ]

(1 + p)θ [A(1 − M)M + p(1 − T )λ] + pλ(1 − T )(1 − θ)
. (20)

The implicit solution shares the main features in Proposition 2:

PROPOSITION 6. With a binding mandatory retirement age, there exists a
unique interior solution for (�s,M) such that (i) 0 < �s < 1 and α < M < 1 for
T < 1; (ii) for T = 1, �s = p/(1 + p) and M = α.

Proof. See part E of the appendix.
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It can be easily verified that Propositions 3–5 apply in this case with a binding
retirement age for T < 1. However, the strength of the effects of rising longevity
should differ from the case without mandatory retirement. When old-age labor
supply is fixed under a binding mandatory retirement age, a rise in longevity
should raise the rate of return to education less than was in the previous section, so
that human capital investment and hence the long-run growth rate should all rise
less as well. Also, with the fixed old-age labor supply, old-age labor income will
not respond to rising longevity so that the saving rate should rise to compensate
for the loss in old-age annuity income more than in the case where old-age labor
supply and labor income responded positively.

It is interesting to see how a rise in the duration of mandatory retirement T ,
or a decline in the mandatory retirement age 3 − T , affects investment in human
capital and saving.

PROPOSITION 7. A lower mandatory retirement age (T < 1), when binding,
reduces time spent on child education M but increases the saving rate �s , at least
if M < 1/2.

Proof. See part F of the appendix.

A lower binding mandatory retirement age reduces work time in old age. The
consequent decline in old-age labor income needs a rise in the saving rate. The
decline in work time in old age also reduces the rate of return to human capital,
causing human capital investment to fall and middle-age labor supply to rise. The
decline in human capital investment also implies:

PROPOSITION 8. A lower mandatory retirement age (T < 1), when binding,
reduces the long-run growth rate.

In addition to the positive analysis, binding mandatory retirement represents
additional constraints on individuals’ choices, which must be welfare reducing
in our model as its equilibrium solution without mandatory retirement would be
chosen by a social planner.

What is the quantitative implication of rising longevity for the economy with
mandatory retirement? How much is it different from the case without mandatory
retirement? To answer these questions, we provide more simulation results in
Tables 2 to 6, while maintaining the same parameterization for (α,A,B, θ, η).
We allow for two values for λ (1.0 or 0.8) and three values for T (0.0, 0.3, 0.7).
As in Table 1, p varies in a wide range from 0.1 to 0.9.

In Tables 2 and 3, we use λ = 1.0 as in Table 1, i.e. labor productivity does
not decline in old age, but allow mandatory retirement (T is equal to 0.3 and 0.7,
respectively). Comparing Tables 1–3, some interesting points are worth noting.
First, the signs of the effects of a rise in p are similar as those in Table 1. Second,
the rises in human capital investment and the growth rate (the saving rate) with
binding mandatory retirement are smaller (larger) than in Table 1. Third, a higher
T (a lower mandatory retirement age), if binding, leads to less human capital
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TABLE 2. Simulation results of rising longevity without mandatory retirement
(T = 0.3)

α = 0.25, A = 6.0, B = 3.0, θ = 0.25, η = 0.18, λ = 1.0

Adult mortality Time on education Time in retirement Saving rate Annual growth
(p) (M, %) (Z, %) (S/Y, %) (G1/30

∞ , %)

0.1 25.11 73.95 6.28 1.38
0.2 25.65 47.04 9.44 1.45
0.3 26.33 38.13 11.33 1.54
0.4 27.05 33.68 12.57 1.63
0.5 27.78 31.00 13.44 1.72
0.6 28.48 30.00 14.15 1.80
0.7 29.13 30.00 14.75 1.88
0.8 29.77 30.00 15.22 1.95
0.9 30.38 30.00 15.58 2.02

investment, higher saving relative to income, and a lower long-run growth rate in
the process of rising longevity. When the mandatory retirement age is set at the
high level (a low T at 0.3) in Table 2, the distortions of mandatory retirement on
the saving rate, education investment and the growth rate are small compared to
Table 1. When the mandatory retirement age is set at the low level (a high T at
0.7) in Table 3, these distortions become large, particularly at high levels of life
expectancy.

In Tables 4 to 6 with the value of λ being set to 0.8, we report simulations
without and with mandatory retirement as in Tables 1 to 3. As λ becomes smaller
(faster depreciation of human capital with age), saving tends to rise but both human
capital investment and the long-run growth rate tend to fall. Also, the signs and

TABLE 3. Simulation results of rising longevity with mandatory retirement
(T = 0.7)

α = 0.25, A = 6.0, B = 3.0, θ = 0.25, η = 0.18, λ = 1.0

Adult mortality Time on education Time in retirement Saving rate Annual growth
(p) (M, %) (Z, %) (S/Y, %) (G1/30

∞ , %)

0.1 25.11 73.95 6.28 1.38
0.2 25.42 70.00 10.55 1.42
0.3 25.80 70.00 13.75 1.47
0.4 26.23 70.00 16.17 1.52
0.5 26.69 70.00 18.07 1.58
0.6 27.16 70.00 19.59 1.64
0.7 27.64 70.00 20.81 1.70
0.8 28.11 70.00 21.82 1.76
0.9 28.57 70.00 22.65 1.81
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TABLE 4. Simulation results of rising longevity without mandatory retirement

α = 0.25, A = 6.0, B = 3.0, θ = 0.25, η = 0.18, λ = 0.8

Adult mortality Time on education Time in retirement Saving rate Annual growth
(p) (M, %) (Z, %) (S/Y, %) (G1/30

∞ , %)

0.1 25.04 87.48 6.60 1.37
0.2 25.49 53.82 10.19 1.43
0.3 26.09 42.68 12.42 1.51
0.4 26.75 37.13 13.93 1.59
0.5 27.42 33.80 15.01 1.67
0.6 28.08 31.57 15.81 1.75
0.7 28.73 29.97 16.41 1.83
0.8 29.36 28.76 16.86 1.91
0.9 29.97 27.82 17.21 1.98

magnitudes of the impacts of higher longevity or a lower mandatory retirement
age are similar to those in Tables 1–3.

A common feature across all the cases under mandatory retirement is that it
becomes binding and distortionary when life expectancy reaches a certain high
level. This indicates that the mandatory retirement age should change with life
expectancy from time to time in order to avoid negative consequences on the
economy. When it lies much below the retirement age chosen by the population,
there would be pressure for change. This seems consistent with the elimination
of mandatory retirement in North America. In the past two decades, mandatory
retirement was prohibited in the public sector and cannot be set below 70 in other
sectors in the United States, and was also banned in some provinces of Canada
[see Gunderson and Riddell (1993)].

TABLE 5. Simulation results of rising longevity with mandatory retirement
(T = 0.3)

α = 0.25, A = 6.0, B = 3.0, θ = 0.25, η = 0.18, λ = 0.8

Adult mortality Time on education Time in retirement Saving rate Annual growth
(p) (M, %) (Z, %) (S/Y, %) (G1/30

∞ , %)

0.1 25.04 87.48 6.60 1.37
0.2 25.49 53.82 10.19 1.43
0.3 26.09 42.68 12.42 1.51
0.4 26.75 37.13 13.93 1.59
0.5 27.42 33.80 15.01 1.67
0.6 28.08 31.57 15.81 1.75
0.7 28.73 30.00 16.41 1.83
0.8 29.33 30.00 17.00 1.90
0.9 29.91 30.00 17.47 1.97
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TABLE 6. Simulation results of rising longevity with mandatory retirement
(T = 0.7)

α = 0.25, A = 6.0, B = 3.0, θ = 0.25, η = 0.18, λ = 0.8

Adult mortality Time on education Time in retirement Saving rate Annual growth
(p) (M, %) (Z, %) (S/Y, %) (G1/30

∞ , %)

0.1 25.04 87.48 6.60 1.37
0.2 25.34 70.00 10.89 1.41
0.3 25.67 70.00 14.33 1.45
0.4 26.04 70.00 16.99 1.50
0.5 26.44 70.00 19.11 1.55
0.6 26.86 70.00 20.81 1.60
0.7 27.28 70.00 22.21 1.66
0.8 27.70 70.00 23.37 1.71
0.9 28.12 70.00 24.34 1.76

The results in this paper will be more practically relevant if eliminating manda-
tory retirement in the real world has indeed led to a significant delay of retirement.
So far, extensive evidence is unavailable in this regard. In a recent empirical study,
Ashenfelter and Card (2002) have investigated the effect of the elimination of
mandatory retirement on faculty retirement in some U.S. colleges and universities,
using information on retirement flows over the 1986–1996 period. Interestingly,
they have indeed found a significant rise in the fraction of older faculty after the
elimination of mandatory retirement: The fraction of 70-year-olds who continued
to work two years later were 8%–10% before the elimination and up to 40% after
the elimination.

5. CONCLUDING REMARKS

In this paper, we have allowed the trade-off between leisure and labor in old age to
investigate the effects of rising longevity on capital accumulation and retirement
timing, and investigated the consequence of mandatory retirement. We began
with a simple life-cycle model of neoclassical growth that generates essentially
similar results as in continuous time life-cycle models: Rising longevity always
raises the retirement age and investment in capital accumulation. We then used the
simple life-cycle structure in a family setting and incorporated parental altruism
toward the welfare of children to motivate human capital investment in children.
Investment in own human capital, captured in the related life-cycle models, differs
from investment in children’s human capital, capture in our model, in that the
former enhances own wage income but the latter does not. As a result, the loss
in one’s own wage income for spending time on education is compensated in the
former case but not in the latter. With this in mind, we have shown why the positive
effects of rising longevity on the saving rate and education investment are subject
to an initial condition that longevity is not already too high, unlike the unrestricted



344 JIE ZHANG AND JUNSEN ZHANG

positive effects in a pure life-cycle model. All of the models point to a delay of
retirement in response to rising longevity, however.

When considering mandatory retirement, we found that binding mandatory
retirement raises the saving rate but reduces human capital investment and the
long-run growth rate. When longevity rises, the magnitudes of these distortions
of mandatory retirement can become substantial if the mandatory retirement age
is set much below the level that individual families would have chosen. Thus, the
mandatory retirement age should adjust in tandem with life expectancy in order to
mitigate its negative consequences on the economy and on agents’ welfare. The
recent elimination of mandatory retirement in some parts or occupations in North
America seems in line with the household optimal behavior captured in this paper.
These results also support proposals to raise the age at which individuals can begin
drawing from public pension plans such as Social Security in the United States
and similar plans in Europe and other developed countries.

NOTES

1. Participation rates of those over 60 fell in the 1970s for both males and females. Many observers
attribute the decline to social security expansion at that time. See, for example, Blinder, Gordon, and
Wise (1980), Boskin (1977), Hu (1979), Sheshinski (1978), and Kahn (1988).

2. According to Fries (1980) and Hammermesh (1985), it is not clear whether the maximum
attainable age has increased despite rapid increases in life expectancies of adults in developed Western
nations. By contrast, some studies find that this maximum age has risen [e.g., Wilmoth, Deegan,
Lundstrom, and Horiuchi (2000)], a possibility that is not considered in this model. Also, death in
fact may occur at any point in lifetime before or during retirement, which is not fully reflected in this
simple overlapping generations model. Our abstraction from these dimensions does not change the
substance of the results as will be seen later.

3. Like Hu (1995), Boucekkine et al. (2002), Bloom et al. (2003) and Echevarrı́a (2004), we take
fertility as exogenously given and focus instead on the labor-leisure trade-off in Section 2 and also on
time spent on child education in Section 3. Beyond the scope of this paper, it would also be interesting
to consider endogenous fertility as in Eckstein and Wolpin (1985) and Zhang et al. (2001).

4. The assumption of leisure to motivate retirement was also used in previous models of retirement
[e.g., Gustman and Steinmeier (1986); Lazear (1986); Lumsdaine and Mitchell (1999)]; in particular,
the preference for leisure increases exponentially with age, the spirit of which is shared in our paper. For
tractability, they assumed a CES function and additively separable utilities derived from consumption
and leisure, whereas, with two types of capital in our core model, we further simplify the utility function
to a logarithmic function for tractability. In the meanwhile, we ignore other factors for retirement that
have been considered in the literature, such as retirement income from pensions and social security in
Stock and Wise (1990) and Lumsdaine, Stock, and Wise (1992), and firms’ demand for old workers in
Hammermesh (1993).

5. Labor productivity may decline with age, which does not affect the essence of the results here.
We will explicitly introduce this element in Section 4.
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APPENDIX

A. First-order conditions. Differentiate (12) with respect to Ht and Ht+1, respectively,

V ′(Ht ) = Wt

Ct

+ p(1 − Zt+1)Wt+1

Dt+1
,

Wt

CtA
= αV ′(Ht+1).

These two equations provide the Euler equation

Wt

CtA
= αWt+1

Ct+1
+ αp(1 − Zt+2)Wt+2

Dt+2
.

Differentiate (12) with respect to St and Zt+1, respectively,

1

Ct

= Rt+1

Dt+1
.

Wt+1Ht

Dt+1
= η

Zt+1
.

These equations equalize the marginal utility loss to the gain with regard to each of the
variables. �

B. Proof of Proposition 2. From (14) and (15), we have

pη(1 − α)M

[1 + p + pη(1 − α)]M − α(1 + p)
= η[AθM(1 − M) + p]

p(1 − θ + η)
.

Let the left side of this equation be Xl(M) and the right side be Xr(M), both as expressions
of Z. For M ∈ [0, 1], we have: X′

r > 0, (=,>), if M < 1/2, (=,>); min(Xr) = Xr(0) =
Xr(1) = η/(1 − θ + η); and max(Xr) = Xr(1/2) = [(Aηθ/4) + ηp]/[p(1 − θ + η)].
Although Xr is single valued and continuous for M ∈ [0, 1], Xl(M) is discontinuous
at M = α(1 + p)/[1 + p + pη(1 − α)], declining from Xl(0) = 0 to −∞ before
M reaches this special point, jumping up to +∞ at that point, and then declining to
Xl(1) = pη(1−α)/[(1−α)(1+p+pη)]. For both M ∈ [0, α(1+p)/[1+p+pη(1−α)])
and M ∈ (α(1 + p)/[1 + p + pη(1 − α)], 1], X′

l (M) < 0. Clearly, for M ∈ [0, α(1 +
p)/[1 + p + pη(1 − α)]), there is no interior solution for M because Xr and Xl have no
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intersection given that Xr > Xl in this range. For M ∈ (α(1 +p)/[1 +p +pη(1 −α)], 1),
there must be a unique intersection of the two curves because (i) Xl falls monotonically
from +∞ to a level Xl(1) below Xr(1) and (ii) Xr is continuous and single valued. Denote
this solution by M∗ ∈ (0, 1). Then we have Z∗ = Xr(M

∗) > 0.
To show �s ∈ (0, 1), we use (15) to obtain M = α(1+p)Z/[(1+p)Z−pη(1−Z)(1−α)]

or 1 − M = (1 − α)[(1 + p)Z − pη(1 − Z)]/[(1 + p)Z − pη(1 − Z)(1 − α)]. Given that
M, Z > 0, it follows that (1 + p)Z − pη(1 − Z)(1 − α) > 0. Given this and 1 − M > 0,
it follows that (1 + p)Z − pη(1 − Z) > 0. Substituting out M in (14) and (15), we have

Aαθη(1 − α)(1 + p)Z[(1 + p)Z − pη(1 − Z)]

= [(1 + p)Z − pη(1 − Z)(1 − α)]2p[(1 − θ)Z − η(1 − Z)]. (A.1)

Since the left side of this equation is positive, [(1 − θ)Z − η(1 − Z)] > 0 and hence
[Z − η(1 − Z)] > 0. Now �s > 0 follows. Clearly, �s < 1.

If leisure has a corner solution Z = 1, then the solution for �s and M is obtained easily
from (13) and (15). �

C. Proof of Proposition 3. Consider the case with an interior solution for leisure, Z < 1.
Rewrite the first equation in the proof of Proposition 2 as

[AθM(1−M)+p][M(1+p+pη−pηα)−α(1+p)] = p2(1−θ +η)(1−α)M. (A.2)

Differentiate it with respect to p: M ′(p) = Xn/Xd where Xn = 2p(1 − θ +η)(1 −α)M −
[1 + p + pη(1 − α)]M + α(1 + p) − [(1 + η − αη)M − α][AθM(1 − M) + p] and
Xd = Aθ(1 − 2M)[(1 + p + pη − αηp)M − α(1 + p)] + [AθM(1 − M) + p][1 + p +
pη(1 − α)] − p2(1 − α)(1 − θ + η). It can be verified that Xn > 0. The sum of the second
and third terms of Xd is positive under (A.2), whereas the first term is positive if M < 1/2
that is sufficient (not necessary) for Xd > 0 and hence M ′(p) > 0.

Differentiate (A.1) with respect to p: Z′ = X̃n/X̃d where X̃n = Z[(1 − θ)Z − η(1 −
Z)]{Z2(1 + p)(1 − p) + p2ηZ(1 − Z) + [Z − η(1 − Z)(1 − α)][pZ(1 + p)(1 − p) +
p3η(1 − Z) + 2p(1 + p)2Z − 2p2(1 + p)η(1 − Z)]} and X̃d = p(1 + p){Zη(1 + θp) +
[(1 + p)Z − pη(1 − Z)][Z(1 + p + pη(1 − α)) + pη(1 − α)]}. It can be verified that
X̃n > 0 and that X̃d < 0. �

D. Proof of Proposition 4. Differentiating �s with respect to p, �′
s is signed by Z[Z −

η(1−Z)]+pηZ′. Using the expression of Z′ in the proof of Proposition 3, it can be shown
that �′

s is signed by

Z(1 + p)(1 + pθ − Z) + p2Z[Z − η(1 − Z)]

+ ηpZ2 + (1 + p)[(1 + p)Z − pη(1 − Z)]

× {Z[1 + p + pη(1 − α)] + pη(1 − α)} − pη[Z − η(1 − Z)(1 − α)]

× {Z(1 + p)(1 − p) + p2η(1 − Z) + 2(1 + p)[(1 + p)Z − pη(1 − Z)]}.
Because [Z − η(1 − Z)] > 0 and [(1 + p)Z − pη(1 − Z)] > 0, the first four terms above
are positive and the last term is negative. If p is close to zero, then so will be the last term,
whereas the rest of the terms will remain positive. Thus, the expression for �′

s is positive if
p is not too high (sufficient but unnecessary). �
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E. Proof of Proposition 6. For T < 1, the proof parallels that of Proposition 2. For
T = 1, the solution for �s is obvious by (20), while the solution for M arises from (19) by
multiplying both sides of (19) by (M − α) (note that M = 1 or M = 0 is suboptimal). �

F. Proof of Proposition 7. Differentiating (19) with respect to T yields

M ′(T )

= [−αp2λ(1 − θ)(1 − M) + (M − α)pλ(1 + pθ)]

pλ(1 − T )[(1 − θ)(1 + αp) + θ(1 + p)] + Aθ(1 + p)(1 − M)M + (M − α)Aθ(1 + p)(1 − 2M)
.

The numerator of this expression is negative, which can be seen more clearly if using (19)
to replace −αp2λ(1 − θ)(1 − M) by −(M − α)θ(1 + p)A(1 − M)M/(1 − T ) − (M −
α)pλ(1 + pθ). The denominator is positive at least if M < 1/2. (Note from Proposition 6
that M − α > 0 for T < 1.)

According to (20), the response of the saving rate to a rise in T , �′
s (T ), is signed

by (1 − M)M + M ′(T )(1 − 2M). Using the expression of M ′(T ), �′
s (T ) is signed by

{pλ(1 − T )(1 − θ)(1 + αp) + (1 + p)θ [A(1 − M)M + pλ(1 − T )]}/{pλ(1 − T )[(1 −
θ)(1 + αp) + θ(1 + p)] + Aθ(1 + p)(1 − M)M + (M − α)Aθ(1 + p)(1 − 2M)} that is
positive under the same condition for M ′(T ) < 0. �


