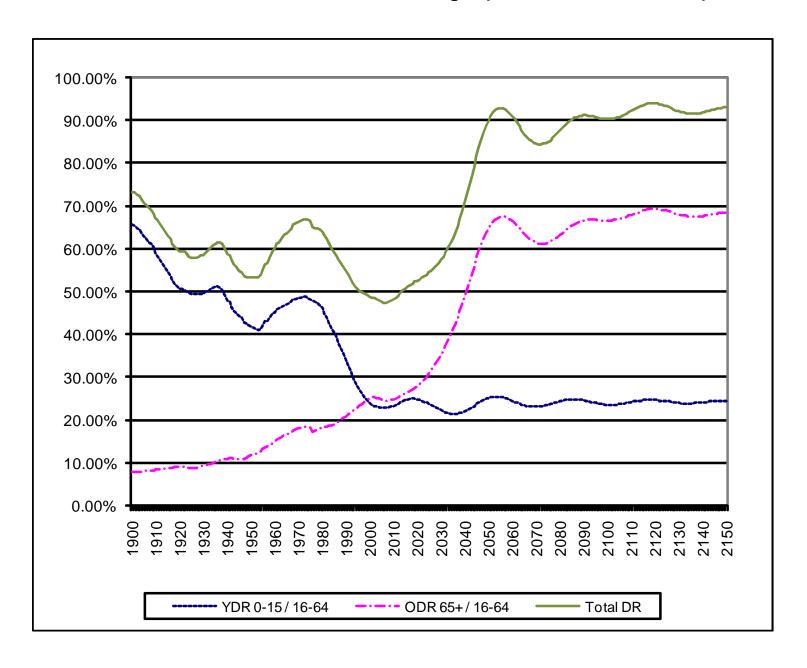
From Transfers to Capital: Analyzing the Spanish Demand for Wealth using NTA

Concepción Patxot*

Elisenda Rentería[†]

Miguel Sánchez-Romero[‡]


Guadalupe Souto[¶]

May 29, 2010

Content

- Motivation: Effects of ageing in the economy (aplication to Spain)
- Metodology
 - Integrate GA and NTA (Partial equilibrium)
 - NTA adds private transfers
 - GA prediction approach
 - We need a General Equilibrium framework:
 building a GE model using/calibrating NTA estimates

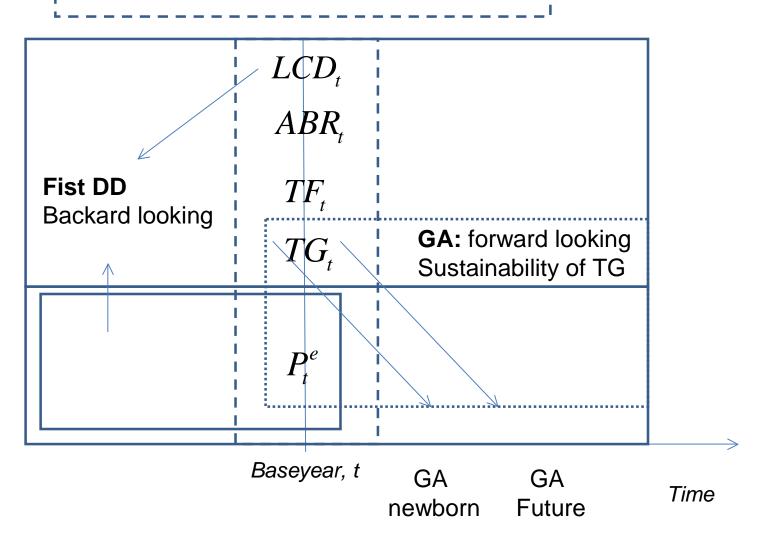
Motivation: Past and future demographic evolution is Spain

Motivación

- The main issue: Effects of population ageing on the economy and the sustainability of the welfare state
- Effects of population ageing on the economy
 - L scarce
 - K relatively abundat

Effects depend on:

- Preferences on savings: retirement/bequest/precaution motive + intergenerational transfers
- Other endogenous variables
- Effects on budget depend on:
 - Increase in demographic dependency and...
 - Increase in ratio benefit receivers/tax payers (wage us the tax base, so...)


NTA and GA an integrated view

Standard NTA: Baseyear Cross Section

$$LCD_{t} = ABR_{t} + TG_{t} + TF_{t}$$

Economic Variables

Demographic Variables: Population (P)

GA/NTA indicators

- Tipical GA sustainability indicator
 - PV future net deficits/PV future GDP
 - = "Intertemporal" Debt/ "Intertemporal" GDP
 - Evolution of Budget balance/GDP
- NTA indicators: Base year and changing population
 - "Economic" Support Ratio (ESR)
 - L/C (weighted by NTA profiles)
 - Another option: LCD/LCS = Aggregate LCD/aggregate + LCD (LCS)
 - Evolution of financing sources of LCD
 - Sustainability Indicators GA

$$1 = \frac{TG}{LCD} + \frac{TF}{LCD} + \frac{ABR}{LCD}$$

$$\frac{LCD}{Y_l} = \frac{TG}{Y_l} + \frac{TF}{Y_l} + \frac{ABR}{Y_l}$$

Issues

- 3-4 "economic sustainability" indicators
- (NTA) TG is "zero" in a closed economy, but still interesting its evolution
- General equilibrium AND wealth account missing

NTA in general equilibrium –OLG model

Theoretical framework:

Standard OLG model = The neoclassical model at work to analyse effects of demographic changes on the Economy

- Life cycle model to obtain endogenous individual savings
- Population dynamics: Interaction among generations:

Main result: Capital per worker and the resulting wages and interest rate

Other possible endogenous decisions: Labour supply

What about transfers?:

- Intergenerational interfamily transfers (IIT)
 - For those to be endogenous you need private "motives"
 - Forward altruism towards children: feeding, educational expenditure, bequest
 - Backward altruism towards the elderly : gifts
 - Public sector intervention on those transfers (not endogenous usually)
- What about ageing, Is it also endogenous? Endogenous fertility and mortality
- Start simple: What would happen to capital if the observed NTA transfers profiles are exogenous or almost so?

Modelling private transfers

Start simple: <u>observed NTA</u> transfers profiles, exogenous <u>or almost so?</u>

Observed NTA transfers

- "some" forward altruism towards children:
 - (Intra-household transfers): health education and other gives utility to parents, as (also exogenous share of private/public):

$$\lambda_{t,x} = 1 + \sum_{s=T_w}^{x} \theta_{x-s} \frac{l_{t-x+s,s}}{l_{t,x}} l_{t,x-s} \hat{f}_{t-x+s,s} I_{x-s < T_w}. \tag{A-15}$$

- Bequest (inter-household) are accidental, due to uncertain life expectancy (no NTA data for this)
- Backward altruism towards the elderly: gifts (inter-hh transfer)
 - (inter-hh, Inter-vivos transfers) Actual Spanish NTA data: The elderly parents give (net) positive transfers to their offspring, even when they are retired.
 - We assume transfers are dependent on –proportional to- the share of public resources received by the elderly (widowhood and retirement)

Table 2: UN SNA Classified Tax Revenues and Public Expenditures by Function in 2000

Expenditures	%GDP		Revenues	%GDP	
Property income, payable	3.27		Taxes on production and imports	10.31	
Social benefits other that in kind	12.08		Taxes on production and imports	11.46	(7.16)
Pensions	10.18		Subsidies	-1.14	
Contributory	9.91		Property income, receivable	1.12	
-Retirement	6.20	(6.23)	Current taxes on income and wealth	10.25	
-Disability	1.73		Taxes on income	9.84	(9.87)
-Survivors	1.87	(1.34)	Individual income tax	6.70	(6.71)
-Maternity	0.11	(0.11)	Corporate income tax	3.14	(3.16)
Non contributory	0.28	, ,	Other current taxes	0.41	1
Unemployment	1.38		Social contributions	12.99	(7.67)
Other social protection	0.52		Other current transfers	0.76	` ′
Other current transfers	1.27				
Government final consumption	17.35				
Education	4.39	(4.45)			
Health	5.23	(5.22)			
Long-term care	0.33	` ′			
Other (in-kind)	7.40	(7.36)			
Saving, net	1.46	, ,			
Total	35.43	(24.71)	Total	35.43	(24.71)

Modelling public transfers

Public benefits:

- In kind transfers in the cosumption profile
- In cash trasnfers:
 - Retirement pensions: depending on the last 15 years wages
 - Widow pension: related to

Taxes: 2 "PAYGO" (no debt)

- Pensions PAYGO: Social security contribution adjust to finance defined benefit retirement pensions
- The rest:
 - Fixed income and capital tax,
 - Consumption tax (VAT) adjusts to finance the rest of the budget

OLG and NTA budget constraints

NTA: strict flow account

$$LCD_x = ABR_x + TG_x + TF_x. (4)$$

OLG individuals budget constraints are a "wealth" account:

(4 period model)

$$a_2 = (1 + (1 - \tau^i)r)(a_1 + h_1) + (1 - \tau^i)(1 - \tau^{ss})y_{l_1} + \phi_1 - (1 + \tau^p)\lambda_1 c_1, \quad (1)$$

$$a_3 = (1 + (1 - \tau^i)r)(a_2 + h_2) + (1 - \tau^i)(1 - \tau^{ss})y_{l_2} + \phi_2 - (1 + \tau^p)\lambda_2 c_2, \quad (2)$$

$$a_4 = (1 + (1 - \tau^i)r)(a_3 + h_3) + (1 - \tau^i)b_3 + \phi_3 - (1 + \tau^p)\lambda_3 c_3, (3)$$

In NTA terms

easy for kids:

$$\underbrace{c_0 + g_0}_{\text{LCD}_0} = \underbrace{g_0}_{\text{TG}_0} + \underbrace{\theta_0 c_1}_{\text{TF}_0},$$

OLG - NTA budget constraints

$$\underbrace{c_{0} + g_{0}}_{\text{LCD}_{0}} = \underbrace{g_{0}}_{\text{TG}_{0}} + \underbrace{\theta_{0}c_{1}}_{\text{TF}_{0}},$$

$$\underbrace{c_{x} + g_{x} - y_{l_{x}}}_{\text{LCD}_{x}} = \underbrace{ra_{x} - s_{x} + (1 + r)\frac{q_{x}}{p_{x}}a_{x}}_{\text{ABR}_{x}}$$

$$+ g_{x} - \tau^{i} \left(r(a_{x} + h_{x}) + (1 - \tau^{ss})y_{l_{x}}\right) - \tau^{ss}y_{l_{x}} - \tau^{p}\lambda_{x}c_{x} - \tau^{c}\frac{r + \delta}{1 - \tau^{c}}(a_{x} + h_{x})\right)$$

$$\underbrace{TG_{x}}_{\text{TG}_{x}}$$

$$+ \underbrace{(1 + r)h_{x} - (1 + r)\frac{q_{x}}{p_{x}}a_{x} + \phi_{x} - (\lambda_{x} - 1)c_{x}}_{\text{TF}_{x}}. \quad (12)$$

$$\underbrace{\sum_{\text{LCD3}}^{c_3 + g_3} = ra_3 - s_3 + (1+r)\frac{q_3}{p_3}a_3}_{\text{ABR3}} + \underbrace{g_3 + b_3 - \tau^i \left(r(a_3 + h_3) + b_3\right) - \tau^p \lambda_3 c_3 - \tau^c \frac{r + \delta}{1 - \tau^c}(a_3 + h_3)}_{\text{TG3}} + \underbrace{\left(1 + r\right)h_3 - (1 + r)\frac{q_3}{p_3}a_3 + \phi_3 - (\lambda_3 - 1)c_3}_{\text{TE2}}.$$
 (13)

Computing demand for real and transfer wealth

$$a_x = \sum_{s=x}^{3} ABR_s \prod_{z=x}^{s} \frac{p_z}{1+r} = \sum_{s=x}^{3} \left((1+r) \frac{1}{p_s} a_s - a_{s+1} \right) \prod_{z=x}^{s} \frac{p_z}{1+r}, \quad (14)$$
 Real (S)

$$w_x = \sum_{s=x}^{3} LCD_s \prod_{z=x}^{s} \frac{p_z}{1+r} = \sum_{s=x}^{3} (c_s + g_s - y_{ls}) \prod_{z=x}^{s} \frac{p_z}{1+r}.$$
 (15) Total (W)

$$W=\sum_{x=0}^3 w_x N_x = \sum_{x=0}^3 a_x N_x + \sum_{x=0}^3 t_x N_x = K+T. \tag{17}$$
 Total aggregate
$$\text{W=K+T}$$

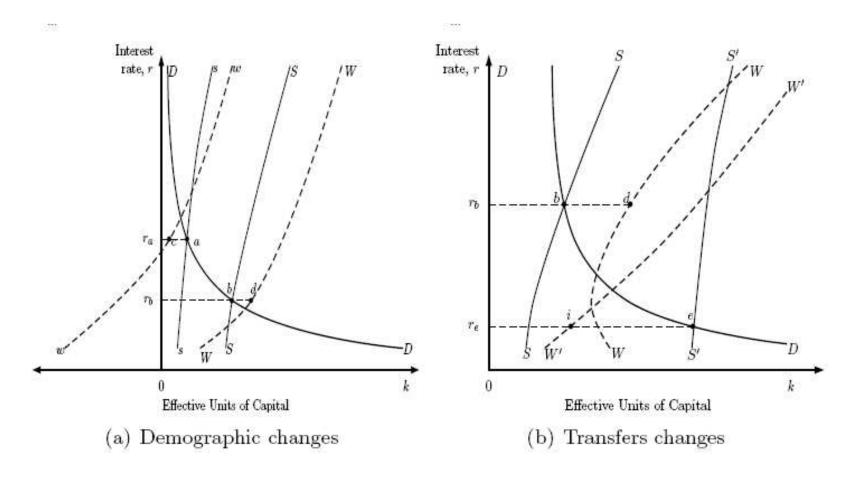


Figure 1: Aggregate Demand for Real and Total Wealth (with borrowing constraints and selfish individuals).

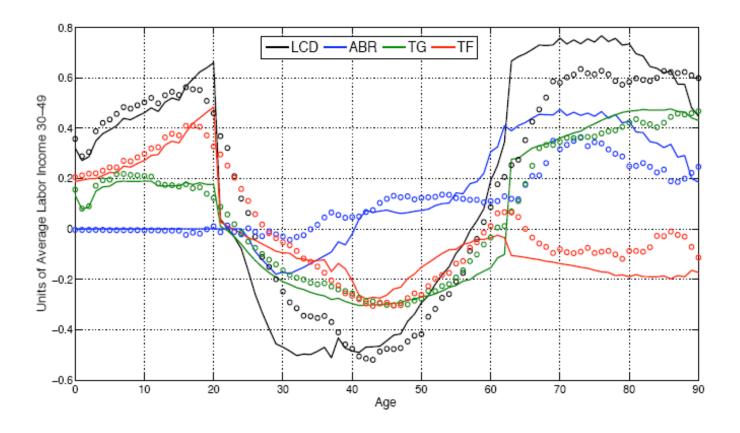


Figure 2: Spain: Actual (o) and Simulated (-) Life Cycle Deficit: Spain, year 2000.

Note: Actual NTA data does not contain bequests whereas our simulated NTA profiles does.

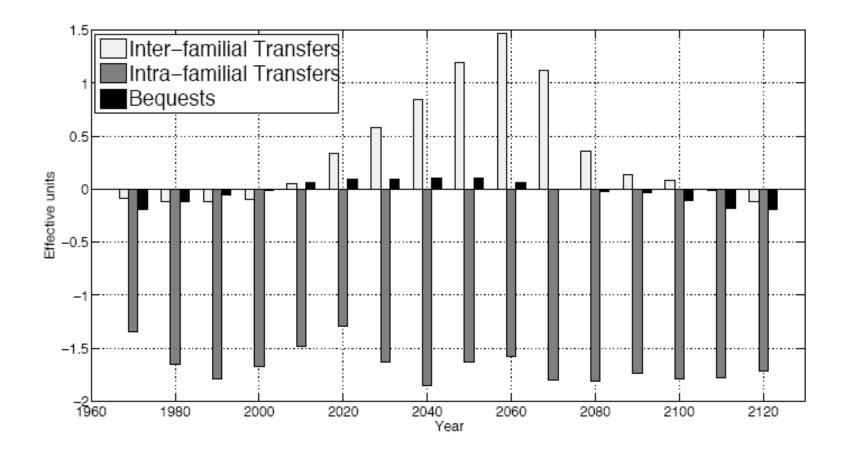


Figure 4: Simulated Aggregate Familial Transfer Wealth: Spain, 1970-2120.

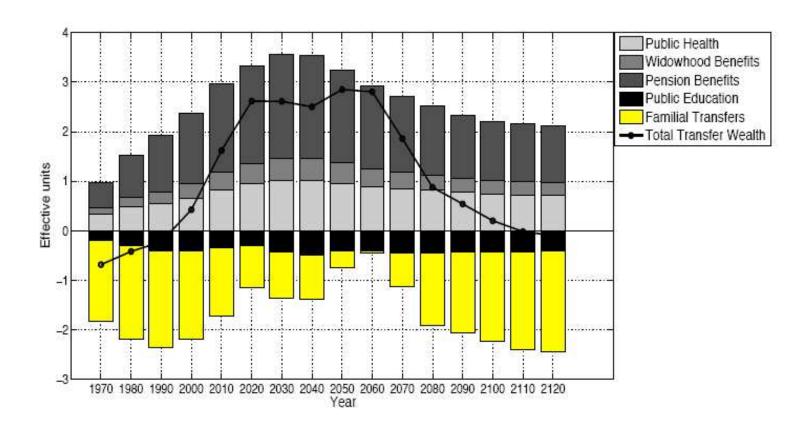


Figure 5: Simulated Aggregate Transfer Wealth: Spain, 1970-2120.

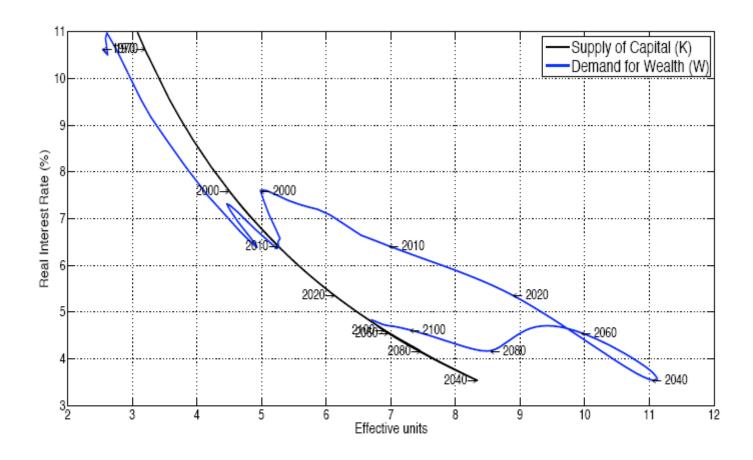


Figure 6: Equilibrium Interest Rate and Demand for Wealth (Total and Real): Spain, 1970-2120.

Conclusion

- Provided the set of transfers by age in 2000 is maintained in the past/future
- The Spanish baby-boom/bust coupled with the generous pension benefits will lead to a progressive decline in the standards (a decrease in disposable income of 6% from 2010 to 2040).
 - Effective capital increases as population at working ages decreases (even with migration) (second demographic dividend, Mason and Lee, 2006).
 - But this is not permanent Thus, salaries and effective capital will decrease,
 yielding lower aggregate consumption and higher interest rates.
 - Defined benefit pension system implies the
 - On the one side, baby boomers benefit from the current social security system, receiving high benetfis relative to their contributions.
 - On the other side, the baby-bust generation deplete capital, because they receive large amounts of inter-vivos transfers from their parents (baby boomers) relative to what they leave to their children.