Gender, Age Structure and Economic Growth: Report on an ICRW Study

Karen Mason 26 June 2008

Reference

Based on a paper by Jeffrey Edmeades, Janna McDougall, Anju Malhotra & Margaret Greene, "Gender Equality and the Demographic Dividend," presented at the PAA Meeting, New Orleans, April 17-19, 2008

Research Design

- Country-level growth regressions that build on the Bloom-Canning-Malaney (2000) model
- Hypothesis is that gender inequality in education (a) slows economic growth, and (b) reduces the positive effects of a favorable age structure on growth
- Reasoning is that inequality represents lost human capital and productivity

Data

- Data for 82 countries covering six five-year periods,1965-1999 (N = 470) – Ghana & S. Africa removed as "outliers"
- All data time-varying with independent variables measured in the base year for each period
- Dependent variable is the logged annual average percentage growth of real GDP per capita measured in PPPs

Data, continued

- Gender inequality is measured as the ratio of female to male years of completed secondary schooling in the population 15+ years of age (model also includes "total schooling" as stock measure)
- Inequality is treated as a dummy variable classification:
 - 1. Female/male > 1.0
 - 2. .75 = or < Female/male = or < 1.0
 - 3. Female/male < .75
- Reason for this choice is not discussed in the paper

Models

- Basic model predicts growth from age structure (log [15-64/N]), base-year GDP, tropics dummy, landlocked dummy, quality of institutions, openness of economy, total schooling, growth in total population, % of GDP from agriculture, and period dummies
- Second model adds the educational inequality dummies
- Third model adds the interaction between base-year GDP and age structure (I'll ignore this model)
- Final model adds interaction terms for (a) gender inequality & age structure, (b) gender inequality & base-year GDP, and (c) gender inequality & pop growth
- They also run separate models within each of the three gender inequality groups

Selected Results 1

<u>Variable</u>	Model 1	Model 2	Model 4
Age structure	6.8**	6.7**	2.3
F ed > m ed		0.5	0.7
F ed = m ed		0.6*	0.9***
F>m * age str			26.5***
F=m * age str			10.6***

Selected Results 2

<u>Variable</u>	<u>F<m< u=""></m<></u>	<u>F=M</u>	<u>F>M</u>
Age structure	1.9	13.2***	14.1***
Initial GDP	-2.4***	-2.9***	-3.6***
Age * Int GDP	-7.7***	-2.9	-3.0

Questions

- What would results look like if there were fewer interactions in the models?
- How did the "outliers" affect the results and why did removing only 12 observations out of 482 change the results substantially?
- Is gender inequality in education what is driving these results or is it some other correlated variable?