Modelling DD based on complexity

Mamadou Bousso and Latif Dramani

Complicated vs Complex

- Problem difficult to solve but
 - Well defined
 - Have clear set of steps
 - A procedure or algorithm to resolve them
 - Problems rich in detail (Peter Senge)
 - Example: build the highest, most robust tower

- Situations where you lack information or have an incomplete understanding is called natural complexity (Atlan)
- Natural complexity allied with multiple interactions is called dynamic complexity (Senge)
- The problem and the solution have to be invented
- Example: build the best toy for children

A complex system

Why is this system complex? Composed of simple components such as individuals

Why is this system complex? Economical and social interactions between individuals

Why is this system complex? Economical and social interactions between individuals

Households

Executive level

Governments

Why is this system complex? Non linearity

« The whole is more than the sum of the parts »

• The deficit of a country is not the sum of the deficit of its citizens

Why is this system complex? No central control

« Individuals are not under control, just mediation by households and governments and the system reorganizes itself »

• We can't oblige an individual to be productive

Why is this system complex? Emergent behaviors

批批

Why is this system complex? **Evolution**

Changes in hierarchical organization and social mutations

Information processing in the whole system for adaptation

Dynamics: changes in pattern

Evolution and learning

Complex system: Iceberg

How to model it? Agent Based Model

- Why ABM Model ?
 - Make predictions using validated theories of agent behaviors
 - Use micro-known to produce macro-unknown
 - Explore and develop new explanations of empirically observed phenomena
 - Use micro-unknown to reproduce macro-known

How to model it? Agent Based Model

- Design
 - Consumer agents
 - Producer agents
 - Interactions based on transfers
 - Some functions such as saving, reproduction, revenue, and consumption
 - Interact within an environment

 \sim

ommand Center

heartors

observer: 1839.7007999999998

14.77

How to model it? Gaming Model

• Why Gaming Model?

- Put the wheels together in a dynamic and strategic way
- Simulate the effects of microeconomic decisions and public policy decisions on capturing the DD
- Understanding the concept of surplus, deficit, and lifecycle deficit

How to model it? Gaming Model at macro level

- Why Gaming Model?
 - Four assumptions on:
 - Fertility
 - Labor market
 - Human capital
 - Governance

Why modelling? Gaming Model at macro level

 Three states for each assumption: giving 81 different cases; illustrating different trajectories; having different meanings in dividend capture

States	F	Η	G	E
Very Good	1	1	1	1
Medium	2	2	2	2
Weak	3	3	3	3

+				
	STATE 1	STATE 2	STATE	
			3	
	1111	2111	3111	
	1112	2112	3112	
	1113	2113	3113	
	1121	2121	3121	
	1122	2122	3122	
	1123	2123	3123	
	1131	2131	3131	
	1132	2132	3132	
	1133	2133	3133	
	1211	2211	3211	
	1212	2212	3212	
	1213	2213	3213	
	1221	2221	3221	
	1222	2222	3222	
	1223	2223	3223	
	1231	2231	3231	
	1232	2232	3232	
	1233	2233	3233	
	1311	2311	3311	
	1312	2312	3312	
	1313	2313	3313	
	1321	2321	3321	
	1322	2322	3322	
	1323	2323	3323	
	1331	2331	3331	
	1332	2332	3332	
	1333	2333	3333	

Why modelling? Gaming Model at macro level

Crefat_Sénégal I DD Game 1.0

How to model it? Gaming Model at micro level

- A networking game based on the fact that the lifecycle deficit is a scaling problem at:
 - the individual level
 - The household level
 - The district level
 - The country level

How to model it? Gaming Model at micro level

- Each player chooses randomly a family and follows the life trajectory of this family: For each event in the family (baby born, death, ...)
 - Consumption, revenue, lifecycle deficit, saving, debts are updated
 - Families are supposed to be in the same district
 - The chief of the district follows economic indicators of the district and takes political decisions

Gaming model at the macro and micro level

- Dissemination:
 - Cards
 - Web platform
 - Mobile platform

Visualization

- Objectives:
 - Visualize evidence obtained from NTA Data
 - Monitor lifecycle deficit evolution on time
 - Open NTA results to a larger public
 - Link for Senegal: <u>https://crefat.univ-thies.sn/crefatdataviz/</u>

Perspectives

- Use genetic algorithm in order to select best variables for capturing a high demographic dividend
- Model demographic dividend capture as a dynamic system or a fractal model

FIN