# **Bequest Session**

Miguel Sánchez-Romero<sup>1</sup>

<sup>1</sup> Wittgenstein Centre (IIASA, VID/ÖAW, WU), Vienna Institute of Demography/Austrian Academy of Sciences

11th November 2014 (Tenth Meeting of Working Group on Macroeconomic Aspects of Intergenerational Transfer: International Symposium on Demographic Change and Policy Response)











Ageing Europe – An Application of National Transfer Accounts for Explaining and Projecting Trends in Public Finances



# 1 Previous model for estimating bequest

- Drawback #1: The bequest model was deterministic
- Drawback #2: Unrealistic profiles early in life
- 2 Proposing a new model for estimating bequest
  - The new model should be consistent with economic theory and rigorous with the demographic setup
    - Dynamic General Stochastic Economic (DGSE) model populated by overlapping generations
    - Stochasticity comes from the risk of mortality rather than through productivity or income shocks

# 8 Pending research questions

- Assessment of the role of bequests vs inter-vivos intergenerational transfers as sources of wealth
- Relation to annuitization of wealth

|      | Household decision problem |  |  |
|------|----------------------------|--|--|
|      |                            |  |  |
| Mode | background                 |  |  |

- Time is discrete
- Individuals are assumed to receive a stream of income over their lifecycle  $\{y_x\}_{x=0}^{\omega}$  and to make decisions about consumption/saving
- Individuals face mortality risk
- Let  $\pi_x$  be the conditional probability of surviving to age x and  $\ell_x = \prod_{u=0}^{x-1} \pi_u$  be the probability of surviving from birth to age x
- Let  $\theta_x$  be a random variable that denotes whether the parent of an individual of age x is alive (s) or dead (d), i.e.  $\theta_x \in \{s, d\}$
- Let  $\theta^x = (\theta_0, \theta_1, \dots, \theta_x)$  represent the history of the variable  $\theta$  up to age x



In a stable population the probability that the parent of an individual of age x dies is characterized by the following Markovian process:

$$\left(egin{array}{c} \ell^{ heta}_{x+1} \ 1-\ell^{ heta}_{x+1} \end{array}
ight) = \left(egin{array}{c} \pi^{ heta}_x & 0 \ 1-\pi^{ heta}_x & 1 \end{array}
ight)\cdot \left(egin{array}{c} \ell^{ heta}_x \ 1-\ell^{ heta}_x \end{array}
ight)$$

with 
$$\ell_0^{\theta} = 1$$
 and  $\pi_x^{\theta} = \frac{\sum_{u=0}^{\omega-x} e^{-nu} f_u \ell_{u+x+1}}{\sum_{u=0}^{\omega-x} e^{-nu} f_u \ell_{u+x}}$ ,

where

 $\ell_a^{\theta}$ s the survival probability of the parent of an individual at age  $a \ \ell_a$  is the survival probability to age  $a \ \omega$  is the maximum longevity n is the population growth rate  $f_a$  is the fertility rate at age a

# Average bequest received

00

Per capita bequest received

$$b_x = \ell^ heta_x(1-\pi^ heta_x)\,\mathsf{E}[\mathcal{B}_x]$$

In a stable population the average bequest received at age u is given by

$$\mathsf{E}\left[\mathcal{B}_{u}\right] = \sum_{x=0}^{\omega-u} \mathsf{P}(\mathbb{A}_{u} = x) \mathsf{E}\left(\mathcal{B}|\mathbb{A}_{u} = x\right)$$

with

$$P(\mathbb{A}_{u} = x) = \frac{e^{-nx} f_{x} d_{x+u}}{\sum_{x=0}^{\Omega-u} e^{-nx} f_{x} d_{u+x}},$$
  
$$\Xi(\mathcal{B}|\mathbb{A}_{u} = x) = \sum_{h=0}^{\infty} \frac{E\left[a(\theta^{x+u})\right]}{1+h} P(\mathcal{H}_{x+u} = h),$$

where

- A<sub>u</sub> is the random variable 'Age of death of a parent of an individual of age u'
   d<sub>x</sub> = l<sub>x</sub> l<sub>x+1</sub> is the fraction of deaths between ages x and x + 1
- $\mathcal{H}_x$  is the number of additional heirs at age x
- $E[a(\theta^{x})] = \int a(\theta^{x}) d P(\theta^{x})$  is the mean financial wealth at age x



A household head of age  $x > x_0$  maximizes the following conditional expected utility with respect to consumption (*c*):

$$V\left[\boldsymbol{a}\left(\boldsymbol{\theta}^{x}\right)\right] = U\left[\boldsymbol{c}(\boldsymbol{\theta}^{x})\right] + \beta \pi_{x} \sum_{\boldsymbol{\theta}_{x+1} \in \{s,d\}} V\left[\boldsymbol{a}\left(\boldsymbol{\theta}^{x+1}\right)\right] \mathsf{P}\left(\boldsymbol{\theta}_{x+1} | \boldsymbol{\theta}^{x}\right),$$

s.t. the budget constraint

$$\begin{cases} \mathsf{a}(\theta^{x+1}) = R\left[\mathsf{a}(\theta^{x}) + y_{x} + \tau_{x} - c(\theta^{x})\right] + R \mathsf{E}(\mathcal{B}_{x}) & \text{If } (\theta_{x+1}, \theta_{x}) = (d, s), \\ \mathsf{a}(\theta^{x+1}) = R\left[\mathsf{a}(\theta^{x}) + y_{x} + \tau_{x} - c(\theta^{x})\right] & \text{Otherwise.} \end{cases}$$

 $a(\cdot) \ge 0$  is the financial wealth (borrowing constraint) R > 1 is the capitalized interest rate  $E[\mathcal{B}_x]$  is the average bequest received at age x  $y_x$  is the endowment at age x $\tau_x$  is the transfer at age x

|        |                 | Solution of the model |  |  |
|--------|-----------------|-----------------------|--|--|
| Optima | al consumption/ | saving decision       |  |  |

The optimal consumption path is characterized by the following Euler equation

$$\begin{cases} U_c \left[ c(\theta^x) \right] = R \beta \pi_x \left( \pi_x^{\theta} U_c \left[ c(\mathbf{s}, \theta^x) \right] + (1 - \pi_x^{\theta}) U_c \left[ c(\mathbf{d}, \theta^x) \right] \right) & \text{ If } \theta_x = \mathbf{s}, \\ U_c \left[ c(\theta^x) \right] = R \beta \pi_x U_c \left[ c(\mathbf{d}, \theta^x) \right] & \text{ If } \theta_x = \mathbf{d}, \end{cases}$$

Note that there exists saving for precautionary motive when  $\theta_{\rm x}={\rm s}$  (Jensen's inequality)



- Assumptions (target: maximum bequest-output ratios)
  - **1** Stable populations that differ by their fertility and mortality schedules (data collected from UNPD, *World Population Prospects: The 2012 Revision*)

2The consumption of children is supported by parents

- **3** The labor income profile is that of a developed country (*to maximize savings for retirement motive*)
- (a) The financial wealth of an individual without offspring is taxed at 100% and distributed ( $\tau_{\rm x}$ ) according to the expected bequest profile
- **5** Two strong demographic assumptions: At the aggregate level the total number of offspring at age x of an individual at age u is assumed to be given by the sum of  $N_{u-x}$  independent Bernoulli random variables, where  $N_{u-x}$  is assumed to be distributed according to a Poisson of parameter  $f_{u-x}$

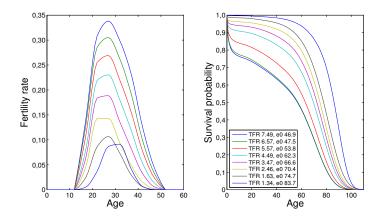
**(**) Fixed interest rate r = 5% and no productivity growth g = 0%

Assumptions

ns Results

Discussion and future worl

# Underlying demographic data



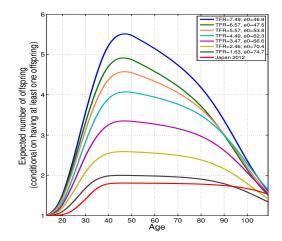
**Figure:** Fertility  $(f_x)$  and survival  $(\ell_x)$  profiles. Source: UNPD, *World Population Prospects: The 2012 Revision.* 

Assumptions

Results Discu

Discussion and future work

### High mortality prevents splitting the wealth among too many heirs



**Figure:** Expected number of offspring of a parent at age *x* (conditional on being one of the offspring)



## The per capita bequest inflow shifts to the right the higher the proportion of bequest given to

spouses

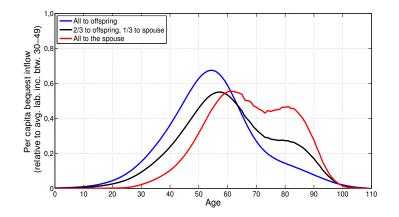


Figure: Per capita bequest inflow over the lifecycle



Per capita bequest inflows and outflows could be as large as the labor income earned in advanced countries

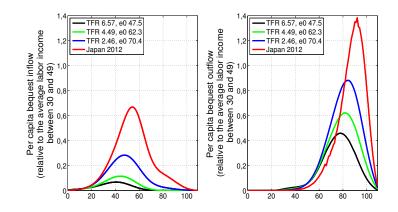
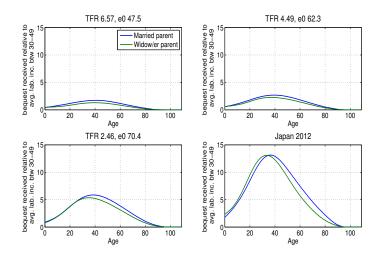


Figure: Per capita bequest inflows across the lifecycle by fraction of bequest given to offspring

# The bequest received increases more than proportionally with declines in TFR due to uncertainty



**Figure:** Bequest received at death of the parent, by marital status,  $E[B_x]$ 

### Strong effect of mortality decline on the bequest-output ratio

Table: Stochastic Model: MAXIMUM BEQUEST-TO-OUTPUT RATIOS FOR r = 5%, g = 0%,  $\alpha = 100\%$  UNDER A STABLE-POPULATION STRUCTURE (RESULTS IN %)

| Life                           |      |      | To      | tal ferti                 | lity rate | (TFR)                                               |       |           |
|--------------------------------|------|------|---------|---------------------------|-----------|-----------------------------------------------------|-------|-----------|
| expectancy                     | 7.49 | 6.57 | 5.57    | 4.49                      | 3.47      | 2.46                                                | 1.63  | Japan     |
|                                |      |      |         |                           |           |                                                     |       |           |
| 46.9                           | 4.05 | 4.63 | 5.87    | 8.20                      | 12.12     | 21.36                                               | 48.32 | 89.07     |
| 47.5                           | 4.01 | 4.57 | 5.84    | 8.08                      | 11.88     | 21.04                                               | 47.10 | 86.23     |
| 53.8                           | 3.67 | 4.25 | 5.37    | 7.42                      | 10.92     | 19.24                                               | 41.44 | 72.54     |
| 62.3                           | 3.29 | 3.87 | 4.91    | 6.82                      | 10.02     | 17.27                                               | 36.71 | 59.62     |
| 66.6                           | 3.07 | 3.63 | 4.62    | 6.47                      | 9.67      | 16.57                                               | 34.56 | 55.22     |
| 70.4                           | 2.90 | 3.45 | 4.44    | 6.29                      | 9.31      | 16.26                                               | 33.01 | 51.40     |
| 74.7                           | 2.73 | 3.29 | 4.27    | 6.11                      | 9.22      | 16.32                                               | 32.84 | 50.55     |
| Japan                          | 2.05 | 2.53 | 3.40    | 5.04                      | 7.90      | 14.62                                               | 30.58 | 42.97     |
| <sup>1</sup> We have used a CE | -6   |      | - x - ( | $\frac{\sigma}{\sigma-1}$ | (1 -) []  | $\frac{\sigma}{\sigma-1}$ $\frac{\sigma-1}{\sigma}$ |       | 1.2 and a |

<sup>1</sup> We have used a CES production function  $Y_t = \left(aK_t^{\sigma-1} + (1-a)H_t^{\overline{\sigma-1}}\right)^{-\sigma}$  with  $\sigma = 1.2$  and a = .25, so that higher capital/output ratios lead to higher capital shares  $\alpha_t = a \left[\frac{K_t}{Y_t}\right]^{1-\frac{1}{\sigma}}$ . <sup>2</sup> We have assumed the following instantaneous utility function at any age x,  $(U(c_x) = \eta_x \frac{(c_x/\eta_x)^{1-\sigma} - 1}{1-\sigma}$  with  $\sigma = 2$ .)

Assumptions

### Strong effect of the mortality decline on the bequest-output ratio

Table: Deterministic Model: MAXIMUM BEQUEST-TO-OUTPUT RATIOS FOR r = 5%, g = 0%,  $\alpha = 100\%$  UNDER A STABLE-POPULATION STRUCTURE (RESULTS IN %)

| Life                                                                                                                                                                                                                                                              |              |           | То          | otal fert | ility rate | (TFR)         |       |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-------------|-----------|------------|---------------|-------|-------------|
| expectancy                                                                                                                                                                                                                                                        | 7.49         | 6.57      | 5.57        | 4.49      | 3.47       | 2.46          | 1.63  | Japan       |
|                                                                                                                                                                                                                                                                   |              |           |             |           |            |               |       |             |
| 46.9                                                                                                                                                                                                                                                              | 4.94         | 5.75      | 7.13        | 9.44      | 12.98      | 19.62         | 31.47 | 43.02       |
| 47.5                                                                                                                                                                                                                                                              | 4.86         | 5.66      | 7.02        | 9.30      | 12.78      | 19.33         | 31.05 | 42.60       |
| 53.8                                                                                                                                                                                                                                                              | 4.41         | 5.17      | 6.47        | 8.72      | 12.23      | 19.05         | 31.53 | 41.94       |
| 62.3                                                                                                                                                                                                                                                              | 3.85         | 4.58      | 5.84        | 8.06      | 11.64      | 18.88         | 32.70 | 42.37       |
| 66.6                                                                                                                                                                                                                                                              | 3.57         | 4.28      | 5.50        | 7.69      | 11.27      | 18.68         | 33.14 | 42.80       |
| 70.4                                                                                                                                                                                                                                                              | 3.31         | 4.01      | 5.23        | 7.41      | 11.04      | 18.71         | 34.00 | 43.92       |
| 74.7                                                                                                                                                                                                                                                              | 3.09         | 3.79      | 5.00        | 7.20      | 10.95      | 19.08         | 35.87 | 46.75       |
| Japan                                                                                                                                                                                                                                                             | 2.30         | 2.89      | 3.93        | 5.91      | 9.46       | 17.72         | 36.45 | 49.01       |
| $\overline{ ^{1} \text{ We have used a CES production function } Y_{t} = \left( a \mathcal{K}_{t}^{\frac{\sigma}{\sigma-1}} + (1-a) \mathcal{H}_{t}^{\frac{\sigma}{\sigma-1}} \right)^{\frac{\sigma-1}{\sigma}} \text{ with } \sigma = 1.2 \text{ and } a = .25,$ |              |           |             |           |            |               |       |             |
| so that higher capita                                                                                                                                                                                                                                             | al/output ra | tios lead | to higher ( |           |            |               |       | ave assumed |
|                                                                                                                                                                                                                                                                   |              |           |             |           |            | $(-1-\sigma)$ | -1    |             |

the following instantaneous utility function at any age x,  $(U(c_x) = \eta_x \frac{(c_x/\eta_x)^{1-\sigma} - 1}{1-\sigma}$  with  $\sigma = 2$ .)

|  |  | Results |  |
|--|--|---------|--|
|  |  |         |  |

Strong effect of savings for retirement motive on the wealth-output ratio

Table: Deterministic Model: MAXIMUM WEALTH-TO-OUTPUT RATIOS FOR r = 5%, g = 0%,  $\alpha = 100\%$  UNDER A STABLE-POPULATION STRUCTURE (RESULTS IN %)

| Life                                                                                                                                                                                                       |             |              | Tot                              | al fertil                     | ity rate          | (TFR)    |       | ,     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------------------------------|-------------------------------|-------------------|----------|-------|-------|
| expectancy                                                                                                                                                                                                 | 7.49        | 6.57         | 5.57                             | 4.49                          | 3.47              | 2.46     | 1.63  | Japan |
|                                                                                                                                                                                                            |             |              |                                  |                               |                   |          |       |       |
| 46.9                                                                                                                                                                                                       | 2.33        | 2.53         | 2.91                             | 3.53                          | 4.37              | 5.78     | 8.16  | 11.52 |
| 47.5                                                                                                                                                                                                       | 2.30        | 2.49         | 2.87                             | 3.48                          | 4.31              | 5.71     | 8.06  | 11.44 |
| 53.8                                                                                                                                                                                                       | 2.39        | 2.59         | 2.99                             | 3.66                          | 4.58              | 6.19     | 8.91  | 12.00 |
| 62.3                                                                                                                                                                                                       | 2.56        | 2.79         | 3.23                             | 3.99                          | 5.07              | 7.01     | 10.35 | 13.27 |
| 66.6                                                                                                                                                                                                       | 2.63        | 2.88         | 3.34                             | 4.15                          | 5.30              | 7.42     | 11.10 | 14.06 |
| 70.4                                                                                                                                                                                                       | 2.74        | 3.00         | 3.50                             | 4.36                          | 5.60              | 7.93     | 12.01 | 15.10 |
| 74.7                                                                                                                                                                                                       | 2.89        | 3.18         | 3.73                             | 4.67                          | 6.07              | 8.72     | 13.46 | 16.92 |
| Japan                                                                                                                                                                                                      | 3.35        | 3.72         | 4.40                             | 5.59                          | 7.39              | 10.93    | 17.54 | 22.16 |
| <sup>1</sup> We have                                                                                                                                                                                       | used        | a            | CES                              | produ                         |                   | function | $Y_t$ | =     |
| $\left(aK_t^{\frac{\sigma}{\sigma-1}} + (1-a)H_t^{\frac{\sigma}{\sigma-1}}\right)^{\frac{\sigma-1}{\sigma}} \text{ with } \sigma = 1.2 \text{ and } a = .25, \text{ so that higher capital/output ratios}$ |             |              |                                  |                               |                   |          |       |       |
| lead to higher capital shares $\alpha_t = a \left[\frac{\kappa_t}{Y_t}\right]^{1-\frac{1}{\sigma}}$ . We have assumed the following instantaneous                                                          |             |              |                                  |                               |                   |          |       |       |
| utility function at a                                                                                                                                                                                      | ny age x, ( | $U(c_x) = r$ | $\int \frac{(c_x/\eta_x)^1}{1-}$ | $\frac{-\sigma}{\sigma}$ with | th $\sigma = 2$ . | )        |       |       |

# Discussion and future work

## Pros

- The assumptions of the model allow us to widely use available demographic data
- We can model several alternatives of transfers between parents and children and between spouses

## Cons

- It is very difficult to theoretically justify the introduction of an annuity market
- Saving for precautionary motive does not lead to higher wealth unless uncertainty is very high (high mortality and wealth)

## Future work

- Introduction of a housing market (additional savings still needed)
- Assessment of the contribution of savings for precautionary motive to total savings

| Outline |  |  | Discussion and future work |
|---------|--|--|----------------------------|
|         |  |  |                            |

• **Bequest wealth** at age x for the cohort born in year s:

$$w_{x,s} = \sum_{z=x}^{\omega} \left( \mathsf{bequest}_{z,s}^{\mathsf{inflow}} - \mathsf{bequest}_{z,s}^{\mathsf{outflow}} \right) \left( \prod_{u=x}^{z} \frac{\pi_{u,s}}{1+r} \right),$$

where  $\pi_{x,s}$  is the conditional probability of surviving from age x to x + 1 for the cohort born in year s

• Aggregate wealth in year t:

$$W_t = \sum_{x} w_{x,t-x} N_{x,t-x}$$

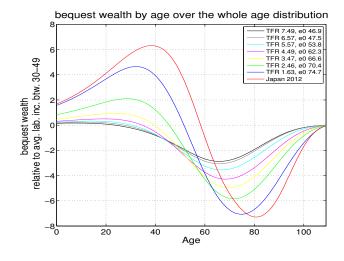


Figure: Bequest wealth

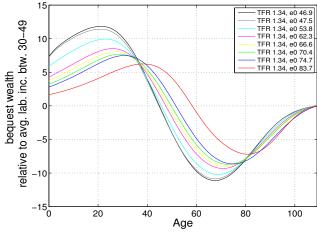


Figure: Bequest wealth (fixed fertility)



Figure: Bequest wealth (fixed mortality)



