Consumption Patterns and Lifecycle Reallocation of Korean Elderly

Chong-Bum An (Sungkyunkwan University, Seoul, Korea) Seung-Hoon Jeon (National Assembly Budget Office (NABO), Seoul, Korea) Sunkuk Lee (Sungkyunkwan University, Seoul, Korea)

NUPRI International Conference: Asia's Dependency Transition: Intergenerational Transfers, Economic Growth, and Public Policy Tokyo, Japan November 1-3, 2007

- Retirement and Consumption
- Retirement decision and Consumption
- Retirement Consumption Puzzle and NTA

MOTIVATION

Motivation

- It is important to pay attention to the effects of household heads' retirement on household consumptions.
 - Retirement is the one of the most important events that most elderly face.
 - Due to the retirement of the household heads, most households experience the declines in household income, which affects the household consumption.

Fot	al fertili	ty ratic	decre	ases fr	om 4.5	53 in 19	970 to	1.08 in	2005
Year	1970	1980	1990	2000	2005	2010	2020	2030	2050
TFR	4.53	2.83	1.59	1.47	1.08	1.21	1.24	1.28	1.3
→ Lii 7.9 ir	fe expe 1 2005,	ectancy and p	rojecte	d to 83	om the 3.3 in 2	age of 050.	62.3 i	n 1971	to

Moti	vatio	on			Рор	ulatio	n Agin	g in K	orea
• Low expec → O 12.6%	levels tancy i Id age 6 in 20	of fert in Kore deper 05, an	ility and ea give ndency d is pro	d contir rise to rate ind ospecte	nued im very ra creases ed to in	proven pid pop from 5 crease	nents ir oulation 5.7% in to 69.4	n life aging 1970 t 1% in 2	o 050.
Trends	of depe	endend	cy rate						
Year	1970	1980	1990	2000	2005	2010	2020	2030	2050
Total	83.8	60.7	44.3	39.5	39.3	37.3	39.4	54.7	86.1
Youth	78.2	54.6	36.9	29.4	26.7	22.3	17.6	17.4	16.7
Old Age	5.7	6.1	7.4	10.1	12.6	14.9	21.8	37.3	69.4
						1			

Motivation

Population Aging in Korea

• The time span during which the ratio increased from 7% to 14% will be only 18 years in Korea, while that was 45 years in U.K., 85 years in Sweden, and 115 years in France

International Comparison of Aging

	Japan	U.S.A	U.K	France	Germany	Italy	Korea
7%	1970	1942	1929	1864	1932	1927	2000
14%	1994	2013	1976	1979	1972	1988	2018
20%	2006	2028	2021	2020	2012	2007	2026
Years spent (7%-14%)	24	71	47	115	40	61	18
Years spent (14%-20%)	12	15	45	41	40	19	8

Retirement ar	n d Consum Pre and Po	p tion ost Retiremen	t Consum	ption
The average pos decreased.	t-retirement co	onsumptions of	total sample	e slightly
- The average pop pre-retirement c	st-retirement c onsumption.	onsumption is 9	4.2% of av	erage
<table 2=""> Pre and</table>	l post retirement	t consumptions (unit: 10,000 Kor	ean Won, %, h	ousehold)
	Pre-Ret. Cons (A)	Post-Ret. Cons. (B)	B/A	# of obs.
total	108.58	102.26	94.2	251

etirement and Co	onsumption onsumption C	Changes by	/ categori
	Pre-Ret. (A)	Post-Ret (B)	(B/A)
Total Consumption	108.58	102.26	94.2
FOOD	36.34	26.91	74.1
FOOD OUT	3.32	2.62	78.8
PUB_EDU	10.83	4.19	38.7
PRI_EDU	3.45	2.53	73.4
CAR	8.70	7.49	86.1
HOUSE	14.47	12.16	84.0
CONDOLENCE	7.66	5.83	76.1
MEDICAL	7.09	7.11	100.2
CULTURE	2.55	2.20	86.2
DURABLE	0.67	0.90	134.0
etc.	13.32	19.59	147.0

Retirement and Consumption

Consumption Changes by categories

• Pre-retirement food expenditure shows more than 20% over the post-retirement food expenditure.

- This is explained by the home production model.

- This implies that the decrease in food consumptions is not the result of "unanticipated shocks occurring around the time of retirement."
 - Hence, decrease in food consumption is not inconsistent with the consumption smoothing that the life-cycle hypothesis predicts.

	Panel Regressior
able 5> Desc	ription of Variables
RETIRE	Self-defined retirement status(1= retire, 0 =Not Retire)
CONS	Average Monthly total consumption
AGE	Age of the household head
SEX	Sex of the household head $(1 = Male, 0 = Female)$
EDU	Years of education
SPOUSE	Whether spouse live together or not (1= live together)
NUM	Number of dependent.
BADHEAL	Health Status (1= Bad, 0 = Not Bad)
HOUSEOWN	Whether household have their own house (1= Own, 0=Not Own)
IMMOVABL	Whether household have their own immovable properties except
ES	their own house (1=Own, 0= Not Own)
Log(ASSET)	Logarithm of household cash assets
Log(Income)	Logarithm of average monthly income

		Pane	el Regression
	Pooled Reg.	BGE	WGE
Constant	2.7025 ***	3.4681 ***	0.0248
Constant	(0.7597)	(1.1580)	(0.0675)
	0.0154	-0.0171	0.0456
AGE	(0.0247)	(0.0380)	(0.0583)
	-0.0260	0.0013	-0.0235
AGE	(0.0198)	(0.0306)	(0.0425)
OFY	-0.0161	0.0331	
SEX	(0.0557)	(0.0866)	
	-0.0341 ***	0.0289 ***	0.0330
EDU	(0.0035)	(0.0053)	(0.0259)
	0.1710 ***	0.1039	0.0585
3P003E	(0.0524)	(0.0848)	(0.0928)
	0.0151	0.0209	-0.0272
NUM	(0.0118)	(0.0198)	(0.0182)

Panel Regression

	Pooled Reg.	BGE	WGE
	0.0299	0.0246	0.0020
BADHEAL	(0.0304)	(0.0653)	(0.0310)
	0.0350	-0.0179	0.0119
HOUSEOWN	(0.0324)	(0.0553)	(0.0466)
	0.1039 ***	0.0622	0.0786 *
IMIMOVABLES	(0.0336)	(0.0645)	(0.0404)
	0.0188 ***	0.0230 ***	0.0057
LOG(ASSET)	(0.0041)	(0.0083)	(0.0044)
	0.1585 ***	0.2353 ***	0.0911 ***
	(0.0115)	(0.0250)	(0.0109)
	0.1724 ***	0.1039	0.0831 **
KETIKE	(0.0283)	(0.0815)	(0.0377)
Adj. R-square	0.4818	0.6934	0.0813
Note: standard errors	in (). *: 10%, **: 59	%, ***: 1% significa	nce level

Retirement and Consumption

Provisional conclusions

- Unlike the other countries such as USA and UK, in Korea, retirement of the household head encourage the consumption increase after controlling the household characteristics that affect household consumption.
- This can be explained by
 - household composition
 - Familial transfer
 - high saving rates

• Retirement decision and Consumption

Retirement Decision and Consumption
results of the 2-stage switching regressior

	Early =	:1
	Coefficients	Standard Errors
onstant	49.1841	9.0365 ***
\GE	-0.8718	0.1523 ***
EX	0.8390	0.6808
DU	-0.0583	0.0575
POUSE	-0.4648	0.5832
MUN	-0.4999	0.2277 **
BADHEAL	0.0754	0.4449
IOUSEOWN	0.6445	0.4663
MMOVABLES	0.2055	0.5804
.og(ASSET)	-0.0196	0.0576
CON	0.1724	0.4180
.og(EAR_INC)	1.5708	1.9040
.og(NOR_INC)	- 1.2156	1.9893
2 Log-Likelihood	- 32.28	11

	Pre-Retirement Consumption		Post-retirement Consumption	
	Early = 1	Early = 0	Early = 1	Early = 0
constant	2.7142 ***	1.8338 ***	3.7751 ***	2.8017 ***
	(0.7813)	(0.5267)	(0.5864)	(0.5908)
AGE	- 0.0004	- 0.0088 *	-0.0322 ***	-0.0159 **
	(0.0156)	(0.0072)	(0.0117)	(0.0081)
SEX	0.0388	0.0307	0.0901	0.0264
	(0.1471)	(0.1112)	(0.1104)	(0.1249)
EDU	0.0280 ***	0.0209 **	0.0265 ***	0.0152
	(0.0144)	(0.0083)	(0.0078)	(0.0093)
SPOUSE	0.1404	-0.0156	0.1702 *	0.0219
	(0.1206)	(0.0824)	(0.0904)	(0.0927)
NUM	0.1449 ***	0.1118 ***	0.0438	0.1464 ***
	(0.0483)	(0.0303)	(0.0362)	(0.0340)

results of the 2-stage switching regression

Retirement Decision and Consumption

Retirement Decision and Consumption results of the 2-stage switching regression

		Post-retirement Consumption	
Early = 1	Early = 0	Early = 1	Early = 0
-0.0651	-0.0135	-0.0102	0.0004
(0.0894)	(0.0665)	(0.0670)	(0.0749)
-0.1107	0.0364	-0.0823	- 0.0473
(0.0847)	(0.0659)	(0.0636)	(0.0743)
-0.1001	- 0.0397	0.0563	-0.0116
(0.1071)	(0.0764)	(0.0804)	(0.0859)
0.0368 ***	0.0072	0.0139	-0.0277 ***
(0.0125)	(0.0095)	(0.0094)	(0.0107)
0.2644 ***		0.4006 ***	
(0.0632)		(0.0475)	
	0.5426 ***		0.4422 ***
	(0.0534)		(0.0601)
-0.0561	-0.1946 *	0.1072	0.0515
(0.1364)	0.1090	(0.1007)	(0.1286)
0.5920	0.8104	0.7450	0.6805
	-0.0651 (0.0894) -0.1107 (0.0847) -0.1001 (0.1071) 0.0368 *** (0.0125) 0.2644 *** (0.0632) -0.0561 (0.1364) 0.5920	Lany - 1 Lany - 0 -0.0651 -0.0135 (0.0894) (0.0665) -0.1107 0.0364 (0.0847) (0.0659) -0.1001 -0.0397 (0.1071) (0.0764) 0.0368 *** (0.0125) (0.0095) 0.2644 *** (0.0632) 0.5426 -0.0561 -0.1946 * (0.1364) 0.1090 0.5920 0.8104	Larry = 1 Larry = 0 Larry = 1 -0.0651 -0.0135 -0.0102 (0.0894) (0.0665) (0.0670) -0.1107 0.0364 -0.0823 (0.0847) (0.0659) (0.0636) -0.1001 -0.0397 0.0563 (0.1071) (0.0764) (0.0804) 0.0368 *** 0.0072 0.0139 (0.0125) (0.0095) (0.0094)

Retirement Decision and Consumption results of the 2-stage switching regression
Major Findings;
Normal retires' pre-retirement consumption conditioned on the retirement decision decrease while normal retires' post-retirement consumption conditioned on the retirement decision dose not decrease.
This implies that, due to the retirement decision, the post-retirement consumption to pre retirement consumption may increase.

